Home
Class 11
MATHS
Evaluate the following limits : Lim(x t...

Evaluate the following limits :
`Lim_(x to 0) (sin^(2)5x)/(sin ^(2)bx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin^2(5x)}{\sin^2(bx)}, \] we will follow these steps: ### Step 1: Check for Indeterminate Form First, we substitute \(x = 0\) into the expression: \[ \sin^2(5 \cdot 0) = \sin^2(0) = 0, \] \[ \sin^2(b \cdot 0) = \sin^2(0) = 0. \] Since both the numerator and denominator approach 0, we have an indeterminate form of type \(\frac{0}{0}\). **Hint:** Always check if substituting the limit point gives an indeterminate form before proceeding with further calculations. ### Step 2: Use the Standard Limit We will use the standard limit: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1. \] To apply this, we rewrite the limit: \[ \lim_{x \to 0} \frac{\sin^2(5x)}{\sin^2(bx)} = \lim_{x \to 0} \left( \frac{\sin(5x)}{5x} \cdot \frac{5x}{bx} \cdot \frac{bx}{\sin(bx)} \right)^2. \] ### Step 3: Rewrite the Expression We rewrite the limit as follows: \[ \lim_{x \to 0} \frac{\sin^2(5x)}{(5x)^2} \cdot \frac{(5x)^2}{(bx)^2} \cdot \frac{(bx)^2}{\sin^2(bx)}. \] This can be expressed as: \[ \lim_{x \to 0} \left( \frac{\sin(5x)}{5x} \right)^2 \cdot \frac{25x^2}{b^2x^2} \cdot \left( \frac{bx}{\sin(bx)} \right)^2. \] ### Step 4: Evaluate Each Limit Now we evaluate each part separately: 1. \(\lim_{x \to 0} \frac{\sin(5x)}{5x} = 1\), so \(\left( \frac{\sin(5x)}{5x} \right)^2 \to 1^2 = 1\). 2. The term \(\frac{25x^2}{b^2x^2} = \frac{25}{b^2}\). 3. \(\lim_{x \to 0} \frac{bx}{\sin(bx)} = 1\), so \(\left( \frac{bx}{\sin(bx)} \right)^2 \to 1^2 = 1\). ### Step 5: Combine the Results Combining all these results, we have: \[ \lim_{x \to 0} \frac{\sin^2(5x)}{\sin^2(bx)} = 1 \cdot \frac{25}{b^2} \cdot 1 = \frac{25}{b^2}. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{\frac{25}{b^2}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(F)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (sin x^(2))/x

Evaluate the following limits : Lim_(x to 0) (sin^(2)x)/(2x)

Evaluate the following limits : Lim_(x to 0) (sin^(2)5x)/(sin 15x)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0 ) (sin x^(@))/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to 0) (2 sin^(2) 3x)/(x^(2))

Evaluate the following limits : Lim_(x to 0) (sin 3x)/(5x)

Evaluate the following limits : Lim_(x to 0) x/(2^(x))

Evaluate the following limits : Lim_(x to 0) (sin ax)/(sin bx)