Home
Class 11
MATHS
Evaluate the following limits : Lim(x t...

Evaluate the following limits :
`Lim_(x to 0) (tan ax )/(tan bx )`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\tan(ax)}{\tan(bx)} \), we can follow these steps: ### Step 1: Recognize the Standard Limit We know from standard calculus that: \[ \lim_{x \to 0} \frac{\tan(x)}{x} = 1 \] This means as \( x \) approaches 0, \( \tan(x) \) behaves like \( x \). ### Step 2: Rewrite the Limit We can rewrite the limit in terms of \( ax \) and \( bx \): \[ \lim_{x \to 0} \frac{\tan(ax)}{\tan(bx)} = \lim_{x \to 0} \frac{\tan(ax)}{ax} \cdot \frac{ax}{bx} \cdot \frac{bx}{\tan(bx)} \] ### Step 3: Apply the Standard Limit Now we can separate the limit: \[ \lim_{x \to 0} \frac{\tan(ax)}{ax} \cdot \lim_{x \to 0} \frac{ax}{bx} \cdot \lim_{x \to 0} \frac{bx}{\tan(bx)} \] Using the standard limit: \[ \lim_{x \to 0} \frac{\tan(ax)}{ax} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{bx}{\tan(bx)} = 1 \] ### Step 4: Simplify the Remaining Terms Now, we simplify the remaining term: \[ \lim_{x \to 0} \frac{ax}{bx} = \frac{a}{b} \] ### Step 5: Combine the Results Putting it all together, we have: \[ \lim_{x \to 0} \frac{\tan(ax)}{\tan(bx)} = 1 \cdot \frac{a}{b} \cdot 1 = \frac{a}{b} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\tan(ax)}{\tan(bx)} = \frac{a}{b} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(F)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_( xto 0 ) (tan 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin ax)/(sin bx)

Evaluate the following limits : Lim_( x to 0) e^(x)

Evaluate the following limits : Lim_(x to 0) (tan. 1/2x)/(3x)

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : Lim_(x to 0) (1+ax)^(b/x)

Evaluate the following limits : Lim_(x to 0) (sin x^(2))/x

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x