Home
Class 11
MATHS
Evaluate the following limits : Lim( xt...

Evaluate the following limits :
`Lim_( xto 0) (sin 2x + sin 6x )/(sin 5x - sin 3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin 2x + \sin 6x}{\sin 5x - \sin 3x}, \] we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{\sin 2x + \sin 6x}{\sin 5x - \sin 3x}. \] ### Step 2: Use the sine limit property We know that as \( x \to 0 \), \( \frac{\sin kx}{kx} \to 1 \) for any constant \( k \). We can manipulate the expression to utilize this property. We rewrite the numerator and denominator by multiplying and dividing by \( x \): \[ = \lim_{x \to 0} \frac{\frac{\sin 2x}{2x} \cdot 2x + \frac{\sin 6x}{6x} \cdot 6x}{\frac{\sin 5x}{5x} \cdot 5x - \frac{\sin 3x}{3x} \cdot 3x}. \] ### Step 3: Factor out constants Now we can factor out the constants from the limit: \[ = \lim_{x \to 0} \frac{2 \cdot \frac{\sin 2x}{2x} + 6 \cdot \frac{\sin 6x}{6x}}{5 \cdot \frac{\sin 5x}{5x} - 3 \cdot \frac{\sin 3x}{3x}}. \] ### Step 4: Apply the limit property Now we can apply the limit property \( \lim_{x \to 0} \frac{\sin kx}{kx} = 1 \): \[ = \frac{2 \cdot 1 + 6 \cdot 1}{5 \cdot 1 - 3 \cdot 1}. \] ### Step 5: Simplify the expression This simplifies to: \[ = \frac{2 + 6}{5 - 3} = \frac{8}{2} = 4. \] ### Final Answer Thus, the limit is \[ \lim_{x \to 0} \frac{\sin 2x + \sin 6x}{\sin 5x - \sin 3x} = 4. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(F)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0) (sin 2x + sin 6x)/(sin 5x - sin 3x)

Evaluate the following limits : Lim_(x to 0) (sin 3x - sin x )/(sin x)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to 0 ) ( sin 5x - sin 3x )/(sin x )

Evaluate the following limits : Lim_(xto 0) (sin (x +h)- sin x)/h

Evaluate the following limits : Lim_(x to 0) (sin ax)/(sin bx)

Evaluate the following limits : Lim_(h to 0) (sin (x+h) -sin x)/h

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(xto pi) (sin 2x)/(sinx)

ICSE-LIMITS -EXERCISE 18(G)
  1. Evaluate the following limits : Lim(x to 0) (tan. 1/2x)/(3x)

    Text Solution

    |

  2. Evaluate the following limits : Lim(x to 0) (sin^(2)5x)/(sin 15x)

    Text Solution

    |

  3. Evaluate the following limits : Lim(x to 0) (sin ax)/(sin bx)

    Text Solution

    |

  4. Evaluate the following limits : Lim(x to 0) (sin^(2)5x)/(sin ^(2)bx)

    Text Solution

    |

  5. Evaluate the following limits : Lim(x to 0)(sin^(2)3x)/(x^(2))

    Text Solution

    |

  6. Evaluate the following limits : Lim(x to 0) (tan ax )/(tan bx )

    Text Solution

    |

  7. Evaluate the following limits : Lim(x to 0) (sin^(2)x)/(2x)

    Text Solution

    |

  8. Evaluate the following limits : Lim(x to 0) (sin x^(2))/x

    Text Solution

    |

  9. Evaluate the following limits : Lim(theta to 0 ) (sin^(3) a theta)/(s...

    Text Solution

    |

  10. Evaluate the following limits : Lim( xto 0) (sin 2x + sin 6x )/(sin 5...

    Text Solution

    |

  11. Evaluate the following limits : Lim( x to 0) ( cos mx - cos n x)/(x^(...

    Text Solution

    |

  12. Evaluate the following limits : Lim(x to 0) (2 sin^(2) 3x)/(x^(2))

    Text Solution

    |

  13. Evaluate the following limits : Lim(x to 0) (1-cos 2x)/(x^(2))

    Text Solution

    |

  14. Evaluate the following limits : Lim(x to 0) (1-cos 4x)/(x^(2))

    Text Solution

    |

  15. Evaluate the following limits : Lim(x to 0 ) (1-cosmx)/(1- cos nx)

    Text Solution

    |

  16. Evaluate the following limits : Lim(x to 0) (cos Ax - cos Bx)/(x^(2))

    Text Solution

    |

  17. Evaluate the following limits : Lim(x to 0 ) (3 sin x - sin 3x)/(x^(3...

    Text Solution

    |

  18. Evaluate the following limits : Lim(x to 0) (sin 3x cos 2x)/(sin 2x)

    Text Solution

    |

  19. Evaluate the following limits : Lim( x to 0) (x^(2))/(1- cos x)

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to 0) (sin 3x - sin x )/(sin x)

    Text Solution

    |