Home
Class 11
MATHS
Evaluate the following limits : Lim(x t...

Evaluate the following limits :
`Lim_(x to 0 ) (3 sin x - sin 3x)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}, \] we can use the multiple angle formula for sine. The formula states that \[ \sin 3x = 3 \sin x - 4 \sin^3 x. \] ### Step 1: Substitute the multiple angle formula We can substitute \(\sin 3x\) in the limit expression: \[ \lim_{x \to 0} \frac{3 \sin x - (3 \sin x - 4 \sin^3 x)}{x^3}. \] ### Step 2: Simplify the expression Now simplify the expression inside the limit: \[ 3 \sin x - (3 \sin x - 4 \sin^3 x) = 4 \sin^3 x. \] Thus, we have: \[ \lim_{x \to 0} \frac{4 \sin^3 x}{x^3}. \] ### Step 3: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} 4 \cdot \frac{\sin^3 x}{x^3} = 4 \cdot \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^3. \] ### Step 4: Apply the standard limit We know from standard calculus that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1. \] Thus, \[ \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^3 = 1^3 = 1. \] ### Step 5: Final calculation Now we can substitute this back into our limit: \[ 4 \cdot 1 = 4. \] ### Conclusion Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3} = 4. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(F)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : lim_(x to oo) (2 sin x - sin 2 x)/(x^(3))

Evaluate the following limits : Lim_(x to 0 ) ( sin 5x - sin 3x )/(sin x )

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(xto 0) (sin (x +h)- sin x)/h

Evaluate the following limits : Lim_(x to 0) (sin 3x - sin x )/(sin x)

Evaluate the following limits : Lim_(x to 0) (sin 2x (1- cos 2x))/(x^(3))

Evaluate the following limits : Lim _(x to 0 ) x sin (1/x)

Evaluate the following limits : Lim_(x to 0) (sin ax)/(sin bx)