Home
Class 11
MATHS
Lim(x to pi/2) (1+cos 2x)/(pi-2x)^(2)...

`Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{1 + \cos(2x)}{(\pi - 2x)^2} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} + h \) As \( x \) approaches \( \frac{\pi}{2} \), we can let \( h \) approach \( 0 \) by substituting \( x = \frac{\pi}{2} + h \). This gives us: \[ \lim_{h \to 0} \frac{1 + \cos(2(\frac{\pi}{2} + h))}{(\pi - 2(\frac{\pi}{2} + h))^2} \] ### Step 2: Simplify the expression Now we simplify the expression: \[ \cos(2(\frac{\pi}{2} + h)) = \cos(\pi + 2h) = -\cos(2h) \] Thus, the limit becomes: \[ \lim_{h \to 0} \frac{1 - \cos(2h)}{(-2h)^2} \] ### Step 3: Simplify the denominator The denominator simplifies to: \[ (-2h)^2 = 4h^2 \] So now we have: \[ \lim_{h \to 0} \frac{1 - \cos(2h)}{4h^2} \] ### Step 4: Use the trigonometric identity We know from trigonometric identities that: \[ 1 - \cos(2h) = 2\sin^2(h) \] Substituting this into our limit gives: \[ \lim_{h \to 0} \frac{2\sin^2(h)}{4h^2} = \lim_{h \to 0} \frac{\sin^2(h)}{2h^2} \] ### Step 5: Apply the limit property Using the limit property \( \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \), we can rewrite the limit: \[ \lim_{h \to 0} \frac{\sin^2(h)}{h^2} = \left( \lim_{h \to 0} \frac{\sin(h)}{h} \right)^2 = 1^2 = 1 \] Thus, the limit becomes: \[ \lim_{h \to 0} \frac{\sin^2(h)}{2h^2} = \frac{1}{2} \] ### Final Answer Therefore, the limit is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(G)|22 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Lim_( x to pi/2) (1-sin x)/((pi-2x)^(2))

Evaluate lim_(xto(pi)/(2)) (1+cos2x)/((pi-2x)^(2)).

Lim_(x to pi/2) (1-sin x)/((pi/2-x)^(2))

Evaluate the following limits: Lim_( x to pi/2 ) (cos x)/(pi/2-x)

Evaluate the following limits: Lim_( x to pi/2 )(1-sin x)/((pi/2-x)^(2))

Evaluate: lim_(x->pi/2)(1+cos2x)/((pi-2x)^2)

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals

Evaluate the following limits : Lim_(x to pi/2) (cos^(2)x)/(1-sinx )

Evaluate lim_(xto pi/2)(1-"sin"x)^2/((pi/2-x)^(2))

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))