Home
Class 11
MATHS
Lim(x to1) (1-1/x)/(sin pi (x-1))...

`Lim_(x to1) (1-1/x)/(sin pi (x-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin(\pi (x - 1))} \), we will follow these steps: ### Step 1: Substitute the limit value We start by substituting \( x = 1 \) into the expression: \[ \frac{1 - \frac{1}{1}}{\sin(\pi (1 - 1))} = \frac{1 - 1}{\sin(0)} = \frac{0}{0} \] This gives us an indeterminate form \( \frac{0}{0} \), which means we can apply L'Hôpital's Rule. **Hint:** If substituting the limit gives \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), consider using L'Hôpital's Rule. ### Step 2: Differentiate the numerator and denominator According to L'Hôpital's Rule, we differentiate the numerator and denominator separately. - **Numerator:** \( 1 - \frac{1}{x} \) - The derivative is \( 0 - \left(-\frac{1}{x^2}\right) = \frac{1}{x^2} \). - **Denominator:** \( \sin(\pi (x - 1)) \) - Using the chain rule, the derivative is \( \pi \cos(\pi (x - 1)) \). ### Step 3: Rewrite the limit using derivatives Now we can rewrite the limit using the derivatives we found: \[ \lim_{x \to 1} \frac{\frac{1}{x^2}}{\pi \cos(\pi (x - 1))} \] ### Step 4: Substitute the limit value again Now we substitute \( x = 1 \) into the new expression: \[ \frac{\frac{1}{1^2}}{\pi \cos(\pi (1 - 1))} = \frac{1}{\pi \cos(0)} = \frac{1}{\pi \cdot 1} = \frac{1}{\pi} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin(\pi (x - 1))} = \frac{1}{\pi} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(G)|22 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

lim_(x to -1) ((1)/(x)+1)/(x+1)

The value of lim_(xrarr1) (logx)/(sin pi x) , is

Lim_(x to pi)(1+sin x)/(x - pi)

Lim_(x to pi/2) (1-sin x)/((pi/2-x)^(2))

Lim_( x to pi/2) (1-sin x)/((pi-2x)^(2))

Evaluate the following limits : Lim_(x to pi/2) (e^(sin x)-1)/(sin x)

The largest value of the non-negative integer a for which lim_(xto1) {(-ax+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=(1)/(4) is ___________.

Find the following limits: (i)lim_(xto0) (1)/(x)sin^(-1)((2x)/(1+x^(2)))" "(ii)lim_(xto0) (1)/(x)sin^(-1)(3x-4x^(3))

Evaluate the following limits : Lim_(x to 1) (sin(e^(x)-1))/(log x)

Evaluate the following limits : Lim_(x to1/2)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1))