Home
Class 11
MATHS
Lim(x to pi) (1+sec^(3)x)/(tan^(2)x)...

`Lim_(x to pi) (1+sec^(3)x)/(tan^(2)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \pi} \frac{1 + \sec^3 x}{\tan^2 x} \), we will follow these steps: ### Step 1: Substitute \( x = \pi \) First, we substitute \( x = \pi \) into the expression to check the form of the limit. \[ \sec(\pi) = -1 \quad \text{and} \quad \tan(\pi) = 0 \] So, we have: \[ 1 + \sec^3(\pi) = 1 + (-1)^3 = 1 - 1 = 0 \] And, \[ \tan^2(\pi) = 0^2 = 0 \] Thus, the limit takes the form \( \frac{0}{0} \), which is indeterminate. ### Step 2: Factor the numerator We will factor the numerator \( 1 + \sec^3 x \). We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Here, let \( a = 1 \) and \( b = \sec x \): \[ 1 + \sec^3 x = (1 + \sec x)(1 - \sec x + \sec^2 x) \] ### Step 3: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to \pi} \frac{(1 + \sec x)(1 - \sec x + \sec^2 x)}{\tan^2 x} \] ### Step 4: Rewrite \( \tan^2 x \) Recall that \( \tan^2 x = \sec^2 x - 1 \). Thus, we can rewrite the limit as: \[ \lim_{x \to \pi} \frac{(1 + \sec x)(1 - \sec x + \sec^2 x)}{\sec^2 x - 1} \] ### Step 5: Simplify the expression Notice that \( \sec^2 x - 1 = \tan^2 x \). So we can simplify further: \[ \lim_{x \to \pi} \frac{(1 + \sec x)(1 - \sec x + \sec^2 x)}{\tan^2 x} \] ### Step 6: Cancel common factors As \( x \to \pi \), both the numerator and denominator approach 0. Thus, we can cancel \( (1 + \sec x) \) from both the numerator and denominator: \[ \lim_{x \to \pi} \frac{1 - \sec x + \sec^2 x}{\sec x - 1} \] ### Step 7: Substitute \( x = \pi \) again Now substituting \( x = \pi \): \[ 1 - \sec(\pi) + \sec^2(\pi) = 1 - (-1) + (-1)^2 = 1 + 1 + 1 = 3 \] And, \[ \sec(\pi) - 1 = -1 - 1 = -2 \] ### Step 8: Final limit calculation Thus, we have: \[ \lim_{x \to \pi} \frac{3}{-2} = -\frac{3}{2} \] ### Final Answer The limit is: \[ \boxed{-\frac{3}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(G)|22 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Match the following : {:("Column-I" , " Column - II"), ("(A)" lim_(x to pi/4)(sin2x)^(tan^(2)2x), "(p)" 1/2),("(B)" lim_(x to oo) ((2x-1)/(2x+1))^(x) , "(q)"e^(-1/2)),("(C)" lim_(x to pi/2)(tanx)^(tan 2x) , "(r)" e^(-1)),("(D)" lim_(x to pi/4) tan2x tan(pi/4-x), "(s)" 1):}

Find the error in steps to evaluate the following integral int_(0)^(pi)(dx)/(1+2 sin ^(2) x )=int _(0)^(pi)(sec^(2)xdx)/(sec^(2)x+2 tan^(2)x)=int_(0)^(pi) (sec^(2)xdx)/(1+3 tan^(2)x) =(1)/(sqrt3)[tan^(-1)(sqrt3 tan x)]_(0)^(pi)=0

Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Lim_(x to pi)(1+sin x)/(x - pi)

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to

Evaluate the following limits : lim_(x to 0) (tan 3x- 2x)/(3x-sin^(2) x)

Statement 1 lim_(x to pi//2)(sin(cot^(2)x))/((pi-2x)^(2))=1/2 Statement 2: lim_(theta to 0)(sin theta)/(theta)=1 and lim_(theta to 0)(tan theta)/(theta)=1 , where theta is measured in radians.

Evaluate the following limit : Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))