Home
Class 11
MATHS
Evaluate the following limits : Lim(x t...

Evaluate the following limits :
`Lim_(x to 0) (x(e^(x)-1))/(1-cos 2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos(2x)}, \] we will use Taylor series expansions for \(e^x\) and \(\cos(2x)\) around \(x = 0\). ### Step 1: Expand \(e^x\) and \(\cos(2x)\) The Taylor series expansion for \(e^x\) around \(x = 0\) is: \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4). \] Thus, \[ e^x - 1 = x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4). \] The Taylor series expansion for \(\cos(2x)\) around \(x = 0\) is: \[ \cos(2x) = 1 - \frac{(2x)^2}{2} + \frac{(2x)^4}{24} + O(x^6) = 1 - 2x^2 + \frac{4x^4}{24} + O(x^6). \] Thus, \[ 1 - \cos(2x) = 2x^2 - \frac{4x^4}{24} + O(x^6) = 2x^2 - \frac{x^4}{6} + O(x^6). \] ### Step 2: Substitute the expansions into the limit Now we substitute these expansions into our limit: \[ \lim_{x \to 0} \frac{x\left(x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4)\right)}{2x^2 - \frac{x^4}{6} + O(x^6)}. \] This simplifies to: \[ \lim_{x \to 0} \frac{x^2 + \frac{x^3}{2} + \frac{x^4}{6} + O(x^5)}{2x^2 - \frac{x^4}{6} + O(x^6)}. \] ### Step 3: Factor out \(x^2\) from the numerator and denominator Factoring \(x^2\) from both the numerator and denominator gives us: \[ \lim_{x \to 0} \frac{x^2\left(1 + \frac{x}{2} + \frac{x^2}{6} + O(x^3)\right)}{x^2\left(2 - \frac{x^2}{6} + O(x^4)\right)}. \] Cancelling \(x^2\) (valid since \(x \to 0\) and \(x^2 \neq 0\) for \(x \neq 0\)): \[ \lim_{x \to 0} \frac{1 + \frac{x}{2} + \frac{x^2}{6} + O(x^3)}{2 - \frac{x^2}{6} + O(x^4)}. \] ### Step 4: Evaluate the limit as \(x \to 0\) As \(x\) approaches 0, the terms involving \(x\) vanish: \[ \frac{1 + 0 + 0}{2 - 0} = \frac{1}{2}. \] Thus, the limit evaluates to: \[ \boxed{\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (x(2^(x)-1))/(1-cos x)

Evaluate the following limits : Lim_(x to 0) (e^(4x)-1)/x

Evaluate the following limits : Lim_(x to 0) x/(2^(x))

Evaluate the following limits : Lim_(x to 0)(e^(x)-x-1)/x

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_( x to 0) e^(x)

Evaluate the following limits : Lim_(x to 0) (e^(x) -1)/(sqrt(1-cos x))

Evaluate the following limits : Lim_( x to 1) (e^(x)-e)/(x-1)

Evaluate the following limits : Lim_( x to 0) (x^(2))/(1- cos x)

Evaluate the following limits : Lim_(x to 0) (e^(sin x) - 1)/x

ICSE-LIMITS -EXERCISE 18(I)
  1. Evaluate the following limits : Lim(x to 0) (3^(x)-1)/x

    Text Solution

    |

  2. Evaluate the following limits : Lim(x to 0)(e^(x)-x-1)/x

    Text Solution

    |

  3. Evaluate the following limits : Lim(x to 0) (x(e^(x)-1))/(1-cos 2x)

    Text Solution

    |

  4. Evaluate the following limits : Lim(x to 0) (x(2^(x)-1))/(1-cos x)

    Text Solution

    |

  5. Evaluate the following limits : Lim(x to 0) (e^(sin x) - 1)/x

    Text Solution

    |

  6. Evaluate the following limits : Lim( x to 0) e^(x)

    Text Solution

    |

  7. Evaluate the following limits : Lim( x to 0) (e^(ax)-e^(bx))/x

    Text Solution

    |

  8. Evaluate the following limits : Lim(x to pi/2) (e^(sin x)-1)/(sin x)

    Text Solution

    |

  9. Evaluate the following limits : Lim( x to 2) (e^(x)-e^(2))/(x-2)

    Text Solution

    |

  10. Evaluate the following limits : Lim( x to 1) (e^(x)-e)/(x-1)

    Text Solution

    |

  11. Evaluate the following limits : Lim( x to 0) (e^(ax)-e^(bx))/x

    Text Solution

    |

  12. Evaluate the following limits : Lim(x to 0) (3^(x)-1)/(sqrt(1+x)-1)

    Text Solution

    |

  13. Evaluate the following limits : Lim( x to 1) x^(1/(x-1))

    Text Solution

    |

  14. Evaluate the following limits : Lim (x to 0) (1+sinx)^(cotx)

    Text Solution

    |

  15. Evaluate the following limits : Lim(x to 0) (8^(x)-2^(x))/x

    Text Solution

    |

  16. Evaluate the following limits : Lim(x to 0) (a^(x) - b^(x))/(sin x)

    Text Solution

    |

  17. Evaluate the following limits : Lim( xto 0) (a^(sin x) - 1)/(sin x)

    Text Solution

    |

  18. Evaluate the following limits : Lim(x to 0) (3^(2x)-2^(3x))/x

    Text Solution

    |

  19. Evaluate the following limits : Lim( x to 1) (x-1)/(log(e)x)

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to 0) (e^(x) +e^(-x)-2)/(x^(2))

    Text Solution

    |