Home
Class 11
MATHS
Evaluate the following limits : Lim(x t...

Evaluate the following limits :
`Lim_(x to 0) (x(2^(x)-1))/(1-cos x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x(2^x - 1)}{1 - \cos x} \] we can follow these steps: ### Step 1: Direct Substitution First, we try direct substitution by plugging \( x = 0 \) into the expression: \[ \frac{0(2^0 - 1)}{1 - \cos(0)} = \frac{0(1 - 1)}{1 - 1} = \frac{0}{0} \] This gives us an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. **Numerator:** The numerator is \( x(2^x - 1) \). We will use the product rule for differentiation: \[ \frac{d}{dx}[x(2^x - 1)] = (2^x - 1) + x \cdot \frac{d}{dx}[2^x] = (2^x - 1) + x \cdot (2^x \ln(2)) \] So, the derivative of the numerator is: \[ 2^x - 1 + x \cdot 2^x \ln(2) \] **Denominator:** The denominator is \( 1 - \cos x \). The derivative is: \[ \frac{d}{dx}[1 - \cos x] = \sin x \] ### Step 3: Rewrite the Limit Now we can rewrite our limit using the derivatives: \[ \lim_{x \to 0} \frac{2^x - 1 + x \cdot 2^x \ln(2)}{\sin x} \] ### Step 4: Substitute Again Now we substitute \( x = 0 \) again: - For the numerator: \[ 2^0 - 1 + 0 \cdot 2^0 \ln(2) = 1 - 1 + 0 = 0 \] - For the denominator: \[ \sin(0) = 0 \] We again have the indeterminate form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 5: Differentiate Again **Numerator:** Now we differentiate \( 2^x - 1 + x \cdot 2^x \ln(2) \): 1. The derivative of \( 2^x \) is \( 2^x \ln(2) \). 2. The derivative of \( x \cdot 2^x \ln(2) \) using the product rule is: \[ \ln(2) \cdot 2^x + x \cdot 2^x \ln(2) \cdot \ln(2) = \ln(2) \cdot 2^x + x \cdot 2^x (\ln(2))^2 \] Thus, the derivative of the numerator becomes: \[ 2^x \ln(2) + \ln(2) \cdot 2^x + x \cdot 2^x (\ln(2))^2 = 2 \cdot 2^x \ln(2) + x \cdot 2^x (\ln(2))^2 \] **Denominator:** The derivative of \( \sin x \) is \( \cos x \). ### Step 6: Rewrite the Limit Again Now we have: \[ \lim_{x \to 0} \frac{2 \cdot 2^x \ln(2) + x \cdot 2^x (\ln(2))^2}{\cos x} \] ### Step 7: Substitute Again Substituting \( x = 0 \): - For the numerator: \[ 2 \cdot 2^0 \ln(2) + 0 \cdot 2^0 (\ln(2))^2 = 2 \ln(2) \] - For the denominator: \[ \cos(0) = 1 \] ### Final Result Thus, the limit evaluates to: \[ \frac{2 \ln(2)}{1} = 2 \ln(2) \] So, the final answer is: \[ \lim_{x \to 0} \frac{x(2^x - 1)}{1 - \cos x} = 2 \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(H)|9 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (x(e^(x)-1))/(1-cos 2x)

Evaluate the following limits : Lim_(x to 0) (3^(x)-1)/x

Evaluate the following limits : Lim_(x to 0 ) (x^(n)-1)/(x-1)

Evaluate the following limits : Lim_(x to 0)(e^(x)-x-1)/x

Evaluate the following limits : Lim_(x to 0) (e^(x) -1)/(sqrt(1-cos x))

Evaluate the following limits : Lim_(x to 0) ((1+x)^(n)-1)/x

Evaluate the following limits : Lim_(x to 1) (x^(2)-1)/(x-1)

Evaluate the following limits : Lim_(x to -1) (x^(2)-1)/(x+1)

Evaluate the following limits : Lim_( x to 0) (x^(2))/(1- cos x)

Evaluate the following limits : Lim_( x to 1) x^(1/(x-1))

ICSE-LIMITS -EXERCISE 18(I)
  1. Evaluate the following limits : Lim(x to 0)(e^(x)-x-1)/x

    Text Solution

    |

  2. Evaluate the following limits : Lim(x to 0) (x(e^(x)-1))/(1-cos 2x)

    Text Solution

    |

  3. Evaluate the following limits : Lim(x to 0) (x(2^(x)-1))/(1-cos x)

    Text Solution

    |

  4. Evaluate the following limits : Lim(x to 0) (e^(sin x) - 1)/x

    Text Solution

    |

  5. Evaluate the following limits : Lim( x to 0) e^(x)

    Text Solution

    |

  6. Evaluate the following limits : Lim( x to 0) (e^(ax)-e^(bx))/x

    Text Solution

    |

  7. Evaluate the following limits : Lim(x to pi/2) (e^(sin x)-1)/(sin x)

    Text Solution

    |

  8. Evaluate the following limits : Lim( x to 2) (e^(x)-e^(2))/(x-2)

    Text Solution

    |

  9. Evaluate the following limits : Lim( x to 1) (e^(x)-e)/(x-1)

    Text Solution

    |

  10. Evaluate the following limits : Lim( x to 0) (e^(ax)-e^(bx))/x

    Text Solution

    |

  11. Evaluate the following limits : Lim(x to 0) (3^(x)-1)/(sqrt(1+x)-1)

    Text Solution

    |

  12. Evaluate the following limits : Lim( x to 1) x^(1/(x-1))

    Text Solution

    |

  13. Evaluate the following limits : Lim (x to 0) (1+sinx)^(cotx)

    Text Solution

    |

  14. Evaluate the following limits : Lim(x to 0) (8^(x)-2^(x))/x

    Text Solution

    |

  15. Evaluate the following limits : Lim(x to 0) (a^(x) - b^(x))/(sin x)

    Text Solution

    |

  16. Evaluate the following limits : Lim( xto 0) (a^(sin x) - 1)/(sin x)

    Text Solution

    |

  17. Evaluate the following limits : Lim(x to 0) (3^(2x)-2^(3x))/x

    Text Solution

    |

  18. Evaluate the following limits : Lim( x to 1) (x-1)/(log(e)x)

    Text Solution

    |

  19. Evaluate the following limits : Lim(x to 0) (e^(x) +e^(-x)-2)/(x^(2))

    Text Solution

    |

  20. Evaluate the following limits : Lim(x to 5) (log x - log 5)/(x-5)

    Text Solution

    |