Home
Class 11
MATHS
Evaluate the following limits : Lim( x...

Evaluate the following limits :
`Lim_( x to a) (x^(a) - a^(a))/(a^(x) - a^(a))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to a} \frac{x^a - a^a}{a^x - a^a}, \] we start by substituting \( x = a \): 1. **Substitution**: \[ \frac{a^a - a^a}{a^a - a^a} = \frac{0}{0}. \] This is an indeterminate form \( \frac{0}{0} \). **Hint**: When you encounter a \( \frac{0}{0} \) form, you can apply L'Hôpital's Rule. 2. **Applying L'Hôpital's Rule**: According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}. \] Here, \( f(x) = x^a - a^a \) and \( g(x) = a^x - a^a \). 3. **Differentiate the numerator**: \[ f'(x) = \frac{d}{dx}(x^a) - \frac{d}{dx}(a^a) = a x^{a-1} - 0 = a x^{a-1}. \] 4. **Differentiate the denominator**: \[ g'(x) = \frac{d}{dx}(a^x) - \frac{d}{dx}(a^a) = a^x \ln a - 0 = a^x \ln a. \] 5. **Re-evaluate the limit**: Now substituting the derivatives back into the limit gives: \[ \lim_{x \to a} \frac{a x^{a-1}}{a^x \ln a}. \] 6. **Substituting \( x = a \)**: \[ = \frac{a \cdot a^{a-1}}{a^a \ln a} = \frac{a^a}{a^a \ln a} = \frac{1}{\ln a}. \] Thus, the final answer is: \[ \lim_{x \to a} \frac{x^a - a^a}{a^x - a^a} = \frac{1}{\ln a}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to a) (xsqrt(x)-asqrt(a))/(x-a)

Evaluate the following limits : Lim_(x to 0) (a^(x) - b^(x))/(sin x)

Evaluate the following limits : Lim_(x to a ) (a^(x)-1)/(b^(x)-1)

Evaluate the following limits : Lim_(x to 0) (e^(x) +e^(-x)-2)/(x^(2))

Evaluate the following limits : Lim_( x to 0) (x^(2))/(1- cos x)

Evaluate the following limits : Lim_(x to 2) (x^(2)(x^(2)-4))/(x-2)

Evaluate the following limits : Lim_(x to 1) (x^(2)-sqrt(x))/(sqrt(x)-1)

Evaluate the following limits : Lim_(x to a) (sqrt(x)-sqrt(a))/(x-a)

Evaluate the following limits : Lim_(x to 0) 5^(x) sin (a/(5^(x)))

Evaluate the following limits : Lim_(x to 9 ) (x^(3//2)-27)/(x-9)