Home
Class 11
MATHS
Evaluate the following limits : Lim( x...

Evaluate the following limits :
`Lim_( x to pi//6) (sin (x - pi/6))/(sqrt(3)/2 - cos x )`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ L = \lim_{x \to \frac{\pi}{6}} \frac{\sin(x - \frac{\pi}{6})}{\frac{\sqrt{3}}{2} - \cos x} \] we notice that directly substituting \( x = \frac{\pi}{6} \) gives us an indeterminate form \( \frac{0}{0} \). Therefore, we need to manipulate the expression to resolve this. ### Step 1: Change of Variables Let \( h = x - \frac{\pi}{6} \). Then, as \( x \to \frac{\pi}{6} \), \( h \to 0 \). Thus, we can rewrite \( x \) as \( h + \frac{\pi}{6} \). ### Step 2: Rewrite the Limit Substituting \( x \) in terms of \( h \): \[ L = \lim_{h \to 0} \frac{\sin(h)}{\frac{\sqrt{3}}{2} - \cos(h + \frac{\pi}{6})} \] ### Step 3: Simplify the Denominator Using the cosine addition formula, we have: \[ \cos(h + \frac{\pi}{6}) = \cos h \cos \frac{\pi}{6} - \sin h \sin \frac{\pi}{6} \] Knowing that \( \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \) and \( \sin \frac{\pi}{6} = \frac{1}{2} \), we can substitute these values: \[ \cos(h + \frac{\pi}{6}) = \cos h \cdot \frac{\sqrt{3}}{2} - \sin h \cdot \frac{1}{2} \] Thus, the denominator becomes: \[ \frac{\sqrt{3}}{2} - \left( \frac{\sqrt{3}}{2} \cos h - \frac{1}{2} \sin h \right) = \frac{\sqrt{3}}{2} (1 - \cos h) + \frac{1}{2} \sin h \] ### Step 4: Substitute Back into the Limit Now we substitute this back into our limit: \[ L = \lim_{h \to 0} \frac{\sin(h)}{\frac{\sqrt{3}}{2} (1 - \cos h) + \frac{1}{2} \sin h} \] ### Step 5: Use Small Angle Approximations As \( h \to 0 \), we can use the small angle approximations: \[ \sin(h) \approx h \quad \text{and} \quad 1 - \cos(h) \approx \frac{h^2}{2} \] Substituting these approximations gives: \[ L = \lim_{h \to 0} \frac{h}{\frac{\sqrt{3}}{2} \cdot \frac{h^2}{2} + \frac{1}{2} h} \] ### Step 6: Simplify the Expression This simplifies to: \[ L = \lim_{h \to 0} \frac{h}{\frac{\sqrt{3}}{4} h^2 + \frac{1}{2} h} = \lim_{h \to 0} \frac{1}{\frac{\sqrt{3}}{4} h + \frac{1}{2}} \] ### Step 7: Evaluate the Limit As \( h \to 0 \): \[ L = \frac{1}{\frac{1}{2}} = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to pi) (sin x )/(x - pi)

Evaluate the following limits : Lim_(xto pi) (sin 2x)/(sinx)

Evaluate the following limits : lim _( xto pi) ( sin x)/(pi - x)

Evaluate the following limits : Lim_( xto pi/2) (1- sin x)/(x cos x)

Evaluate the following limits : Lim_(x to pi/4) (1- tan x)/(x - pi/4 )

Evaluate the following limits: Lim_( x to pi/2 ) (cos x)/(pi/2-x)

Evaluate the following limits : Lim_(x to 0) (sin x cos x)/(3x)

Evaluate the following limits : Lim_(x to pi/2) (e^(sin x)-1)/(sin x)

Evaluate the following limits: Lim_( x to pi/2 )(1-sin x)/((pi/2-x)^(2))

Evaluate the following limits : Lim_(x to pi/2) (cos^(2)x)/(1-sinx )