Home
Class 11
MATHS
Evaluate the following limits : Lim(th...

Evaluate the following limits :
`Lim_(theta to pi/2) (1-sin theta)/((pi/2-theta)cos theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ L = \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{\left(\frac{\pi}{2} - \theta\right) \cos \theta} \] we will follow these steps: ### Step 1: Substitute the limit First, we substitute \(\theta = \frac{\pi}{2}\) into the expression: \[ L = \frac{1 - \sin\left(\frac{\pi}{2}\right)}{\left(\frac{\pi}{2} - \frac{\pi}{2}\right) \cos\left(\frac{\pi}{2}\right)} = \frac{1 - 1}{0 \cdot 0} = \frac{0}{0} \] Since we get an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule L'Hôpital's Rule states that if we have an indeterminate form \( \frac{0}{0} \), we can differentiate the numerator and the denominator: \[ L = \lim_{\theta \to \frac{\pi}{2}} \frac{\frac{d}{d\theta}(1 - \sin \theta)}{\frac{d}{d\theta}\left((\frac{\pi}{2} - \theta) \cos \theta\right)} \] ### Step 3: Differentiate the numerator and denominator The derivative of the numerator \(1 - \sin \theta\) is: \[ \frac{d}{d\theta}(1 - \sin \theta) = -\cos \theta \] For the denominator, we will use the product rule: \[ \frac{d}{d\theta}\left((\frac{\pi}{2} - \theta) \cos \theta\right) = \frac{d}{d\theta}(\frac{\pi}{2} - \theta) \cdot \cos \theta + (\frac{\pi}{2} - \theta) \cdot \frac{d}{d\theta}(\cos \theta) \] Calculating this gives: \[ = -\cos \theta + (\frac{\pi}{2} - \theta)(-\sin \theta) = -\cos \theta - (\frac{\pi}{2} - \theta) \sin \theta \] ### Step 4: Substitute again Now we substitute back into the limit: \[ L = \lim_{\theta \to \frac{\pi}{2}} \frac{-\cos \theta}{-\cos \theta - (\frac{\pi}{2} - \theta) \sin \theta} \] ### Step 5: Evaluate the limit Substituting \(\theta = \frac{\pi}{2}\): \[ L = \frac{-\cos\left(\frac{\pi}{2}\right)}{-\cos\left(\frac{\pi}{2}\right) - \left(\frac{\pi}{2} - \frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right)} = \frac{0}{0 - 0} = \frac{0}{0} \] Since we still have \( \frac{0}{0} \), we apply L'Hôpital's Rule again. ### Step 6: Differentiate again Differentiating again gives: Numerator: \[ \frac{d}{d\theta}(-\cos \theta) = \sin \theta \] Denominator: \[ \frac{d}{d\theta}(-\cos \theta - (\frac{\pi}{2} - \theta) \sin \theta) = \sin \theta - \left(-\sin \theta + (\frac{\pi}{2} - \theta) \cos \theta\right) = 2\sin \theta - (\frac{\pi}{2} - \theta) \cos \theta \] ### Step 7: Substitute again Now substituting again: \[ L = \lim_{\theta \to \frac{\pi}{2}} \frac{\sin \theta}{2\sin \theta - (\frac{\pi}{2} - \theta) \cos \theta} \] ### Step 8: Final evaluation Substituting \(\theta = \frac{\pi}{2}\): \[ L = \frac{\sin\left(\frac{\pi}{2}\right)}{2\sin\left(\frac{\pi}{2}\right) - 0} = \frac{1}{2 \cdot 1} = \frac{1}{2} \] Thus, the limit evaluates to: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LIMITS

    ICSE|Exercise EXERCISE 18(I)|34 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(theta to pi/2)(cot theta)/(pi/2 - theta )

Evaluate the following limits : Lim_(theta to pi/2 ) ((2theta-pi)/cos theta )

Evaluate the following limits : Lim_(theta to pi/2 ) (sec theta - tan theta )

Evaluate the following limits : Lim_(theta to 0 ) (sin^(3) a theta)/(sin^(2)b theta)

Evaluate the following limit : Lim_(theta to pi/4) (sin theta -cos theta)/(theta-1/4pi)

Evaluate the following limit: (lim)_(theta->0)(sin3theta)/(tan2theta)

Evaluate the following limit: (lim)_(theta->0)(1-cos4theta)/(1-cos6theta)

Evaluate the limits : Lim_(theta to pi/6) (cot^(2) theta - 3)/(" cosec " theta - 2)

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)