Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0) (sin 3x)/(sin 2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( L = \lim_{x \to 0} \frac{\sin 3x}{\sin 2x} \), we can use the standard limit property that states \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \). ### Step-by-Step Solution: 1. **Rewrite the limit**: \[ L = \lim_{x \to 0} \frac{\sin 3x}{\sin 2x} \] 2. **Multiply and divide by \( 3x \) and \( 2x \)**: \[ L = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3x}{\sin 2x} \cdot \frac{2x}{2x} \] This can be rearranged to: \[ L = \lim_{x \to 0} \left( \frac{\sin 3x}{3x} \cdot \frac{3}{2} \cdot \frac{2x}{\sin 2x} \right) \] 3. **Separate the limits**: \[ L = \frac{3}{2} \cdot \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \lim_{x \to 0} \frac{2x}{\sin 2x} \] 4. **Evaluate the limits**: - From the standard limit property, we know: \[ \lim_{x \to 0} \frac{\sin 3x}{3x} = 1 \] - Also, using the same property: \[ \lim_{x \to 0} \frac{2x}{\sin 2x} = 1 \] 5. **Combine the results**: \[ L = \frac{3}{2} \cdot 1 \cdot 1 = \frac{3}{2} \] ### Final Answer: \[ L = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to 0) (sin 3x)/(5x)

Evaluate the following limits : Lim_(x to 0) (sin ax)/(sin bx)

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to 0 ) ((sin ax)/(sin bx))^(k)

Evaluate the following limits : Lim_(x to 0) (sin x^(2))/x

Evaluate the following limits : Lim_(xto pi) (sin 2x)/(sinx)

Evaluate the following limits : Lim_(x to 0) (sin 3x cos 2x)/(sin 2x)

Evaluate the following limits : lim_(x to 0) (sin 2x + sin 6x)/(sin 5x - sin 3x)