Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0) (sin 2x + sin 6x)/(sin 5x - sin 3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin 2x + \sin 6x}{\sin 5x - \sin 3x}, \] we can use trigonometric identities to simplify the expression. ### Step 1: Apply the Sine Addition and Subtraction Identities We will use the identities for sine addition and subtraction: 1. \(\sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)\) 2. \(\sin c - \sin d = 2 \cos\left(\frac{c+d}{2}\right) \sin\left(\frac{c-d}{2}\right)\) For the numerator, let \(a = 6x\) and \(b = 2x\): \[ \sin 2x + \sin 6x = 2 \sin\left(\frac{6x + 2x}{2}\right) \cos\left(\frac{6x - 2x}{2}\right) = 2 \sin(4x) \cos(2x). \] For the denominator, let \(c = 5x\) and \(d = 3x\): \[ \sin 5x - \sin 3x = 2 \cos\left(\frac{5x + 3x}{2}\right) \sin\left(\frac{5x - 3x}{2}\right) = 2 \cos(4x) \sin(x). \] ### Step 2: Substitute Back into the Limit Now substituting these identities back into the limit gives us: \[ \lim_{x \to 0} \frac{2 \sin(4x) \cos(2x)}{2 \cos(4x) \sin(x)}. \] The factor of 2 cancels out: \[ \lim_{x \to 0} \frac{\sin(4x) \cos(2x)}{\cos(4x) \sin(x)}. \] ### Step 3: Simplify the Limit We can rewrite this limit as: \[ \lim_{x \to 0} \left( \frac{\sin(4x)}{4x} \cdot \frac{4x}{\sin(x)} \cdot \cos(2x) \cdot \frac{1}{\cos(4x)} \right). \] ### Step 4: Evaluate Each Component 1. \(\lim_{x \to 0} \frac{\sin(4x)}{4x} = 1\) (using the standard limit). 2. \(\lim_{x \to 0} \frac{4x}{\sin(x)} = 4\) (using the standard limit). 3. \(\lim_{x \to 0} \cos(2x) = \cos(0) = 1\). 4. \(\lim_{x \to 0} \frac{1}{\cos(4x)} = \frac{1}{\cos(0)} = 1\). ### Step 5: Combine the Results Putting it all together, we have: \[ 1 \cdot 4 \cdot 1 \cdot 1 = 4. \] Thus, the limit evaluates to: \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_( xto 0) (sin 2x + sin 6x )/(sin 5x - sin 3x)

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to 0) (sin 3x - sin x )/(sin x)

Evaluate the following limits : Lim_(x to 0 ) ( sin 5x - sin 3x )/(sin x )

Evaluate the following limits : lim_(x to 0) (sin 3x)/(sin 2x)

Evaluate the following limits : Lim_(xto 0) (sin (x +h)- sin x)/h

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to 0) (sin x^(2))/x

Evaluate the following limits : Lim_(h to 0) (sin (x+h) -sin x)/h