Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to oo) (2 sin x - sin 2 x)/(x^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \infty} \frac{2 \sin x - \sin 2x}{x^3}, \] we can follow these steps: ### Step 1: Rewrite \(\sin 2x\) We know that \(\sin 2x = 2 \sin x \cos x\). Therefore, we can rewrite the expression in the limit: \[ \lim_{x \to \infty} \frac{2 \sin x - \sin 2x}{x^3} = \lim_{x \to \infty} \frac{2 \sin x - 2 \sin x \cos x}{x^3}. \] ### Step 2: Factor out \(2 \sin x\) Now, we can factor out \(2 \sin x\) from the numerator: \[ = \lim_{x \to \infty} \frac{2 \sin x (1 - \cos x)}{x^3}. \] ### Step 3: Rewrite \(x^3\) We can express \(x^3\) as \(x^2 \cdot x\): \[ = \lim_{x \to \infty} \frac{2 \sin x (1 - \cos x)}{x^2 \cdot x}. \] ### Step 4: Use the identity \(1 - \cos x\) Using the identity \(1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right)\): \[ = \lim_{x \to \infty} \frac{2 \sin x \cdot 2 \sin^2\left(\frac{x}{2}\right)}{x^2 \cdot x} = \lim_{x \to \infty} \frac{4 \sin x \sin^2\left(\frac{x}{2}\right)}{x^3}. \] ### Step 5: Analyze the limit As \(x\) approaches infinity, \(\sin x\) oscillates between -1 and 1, and \(\sin^2\left(\frac{x}{2}\right)\) also oscillates between 0 and 1. Therefore, the numerator is bounded while the denominator \(x^3\) approaches infinity. Thus, we can conclude: \[ \lim_{x \to \infty} \frac{4 \sin x \sin^2\left(\frac{x}{2}\right)}{x^3} = 0. \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to \infty} \frac{2 \sin x - \sin 2x}{x^3} = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ICSE|Exercise EXERCISE 18(J)|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|17 Videos
  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) (sin x)/x

Evaluate the following limits : Lim_(x to 0 ) (3 sin x - sin 3x)/(x^(3))

Evaluate the following limits : Lim_(x to 0) (sin 2x)/x

Evaluate the following limits : Lim_(x to 0) (sin 3x - sin x )/(sin x)

Evaluate the following limits : Lim_(x to 0) (sin x )/x

Evaluate the following limits : Lim_(x to oo) (cos x)/x

Evaluate the following limits : Lim_(x to 0) (sin 2x (1- cos 2x))/(x^(3))

Evaluate the following limits : Lim_(xto oo) x tan (1/x)

Evaluate the following limits : lim_(x to 0) (sin 3x)/(sin 2x)

Evaluate the following limits : Lim_(x to 0 ) ( sin 5x - sin 3x )/(sin x )