Home
Class 11
MATHS
Find the centre of the ellipse 25x^(2)+9...

Find the centre of the ellipse `25x^(2)+9y^(2)-150x-90y+225=0`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

In the ellipse 25x^(2)+9y^(2)-150x-90y+225=0

Find the eccentricity, centre, vertices, foci, minor axis, major axis, directrices and latus-rectum of the ellipse 25 x^2+9y^2-150 x-90 y+225=0.

The centre of the ellipse 3x^(2)+4y^(2)-128y+4=0 is

Find the eccentricity of the ellipse, 4x^(2)+9y^(2)-8x-36y+4=0 .

The centre of the ellipse 4x^(2) + 9y^(2) + 16x - 18y - 11 = 0 is

Find the centre of the ellipse, (x^(2)-ax)/a^(2)+(y^(2)-by)/b^(2)=0 .

Find the foci of the ellipse 25(x+1)^2+9(y+2)^2=225.

Find the centre foci and the equation of the directrices of the ellipse 8x^(2) +9y^(2) - 16x + 18 y - 55 = 0

Write the centre and eccentricity of the ellipse 3x^2+4y^2-6x+8y-5=0.

Length of the perpendicualar from the centre of the ellipse 27x^(2)+9y^(2)=243 on a tangent drawn to it which makes equqal intercepts on the coordiantes axes is