Arrange the following rational numbers in ascending order :
(i) `3/4, 5/8, 11/16, 21/32`, (ii) `-2/5, 7/(-10), -8/15, 17/(-30)`
(iii) `5/(-12), -2/3, -7/9, 11/(-18)`, (iv) `-4/7, 13/(-28), 9/14, 23/42`
Arrange the following rational numbers in ascending order :
(i) `3/4, 5/8, 11/16, 21/32`, (ii) `-2/5, 7/(-10), -8/15, 17/(-30)`
(iii) `5/(-12), -2/3, -7/9, 11/(-18)`, (iv) `-4/7, 13/(-28), 9/14, 23/42`
(i) `3/4, 5/8, 11/16, 21/32`, (ii) `-2/5, 7/(-10), -8/15, 17/(-30)`
(iii) `5/(-12), -2/3, -7/9, 11/(-18)`, (iv) `-4/7, 13/(-28), 9/14, 23/42`
Text Solution
AI Generated Solution
The correct Answer is:
To arrange the given rational numbers in ascending order, we will follow a systematic approach for each set of numbers.
### (i) Arrange `3/4, 5/8, 11/16, 21/32` in ascending order:
1. **Find the LCM of the denominators**: The denominators are 4, 8, 16, and 32. The LCM is 32.
2. **Convert each fraction to have a common denominator**:
- \( \frac{3}{4} = \frac{3 \times 8}{4 \times 8} = \frac{24}{32} \)
- \( \frac{5}{8} = \frac{5 \times 4}{8 \times 4} = \frac{20}{32} \)
- \( \frac{11}{16} = \frac{11 \times 2}{16 \times 2} = \frac{22}{32} \)
- \( \frac{21}{32} = \frac{21}{32} \)
3. **List the converted fractions**:
- \( \frac{20}{32}, \frac{21}{32}, \frac{22}{32}, \frac{24}{32} \)
4. **Arrange in ascending order**:
- The order is \( \frac{20}{32}, \frac{21}{32}, \frac{22}{32}, \frac{24}{32} \).
5. **Replace with original fractions**:
- \( \frac{5}{8}, \frac{21}{32}, \frac{11}{16}, \frac{3}{4} \)
**Final Ascending Order**:
\[ \frac{5}{8} < \frac{21}{32} < \frac{11}{16} < \frac{3}{4} \]
---
### (ii) Arrange `-2/5, 7/(-10), -8/15, 17/(-30)` in ascending order:
1. **Find the LCM of the denominators**: The denominators are 5, -10, 15, and -30. The LCM is 30.
2. **Convert each fraction to have a common denominator**:
- \( \frac{-2}{5} = \frac{-2 \times 6}{5 \times 6} = \frac{-12}{30} \)
- \( \frac{7}{-10} = \frac{7 \times -3}{-10 \times -3} = \frac{-21}{30} \)
- \( \frac{-8}{15} = \frac{-8 \times 2}{15 \times 2} = \frac{-16}{30} \)
- \( \frac{17}{-30} = \frac{17}{-30} \)
3. **List the converted fractions**:
- \( \frac{-21}{30}, \frac{-16}{30}, \frac{-12}{30}, \frac{17}{-30} \)
4. **Arrange in ascending order**:
- The order is \( \frac{-21}{30}, \frac{-16}{30}, \frac{-12}{30}, \frac{17}{-30} \).
5. **Replace with original fractions**:
- \( \frac{7}{-10}, \frac{-8}{15}, \frac{-2}{5}, \frac{17}{-30} \)
**Final Ascending Order**:
\[ \frac{7}{-10} < \frac{-8}{15} < \frac{-2}{5} < \frac{17}{-30} \]
---
### (iii) Arrange `5/(-12), -2/3, -7/9, 11/(-18)` in ascending order:
1. **Find the LCM of the denominators**: The denominators are -12, 3, 9, and -18. The LCM is 36.
2. **Convert each fraction to have a common denominator**:
- \( \frac{5}{-12} = \frac{5 \times -3}{-12 \times -3} = \frac{-15}{36} \)
- \( \frac{-2}{3} = \frac{-2 \times 12}{3 \times 12} = \frac{-24}{36} \)
- \( \frac{-7}{9} = \frac{-7 \times 4}{9 \times 4} = \frac{-28}{36} \)
- \( \frac{11}{-18} = \frac{11 \times -2}{-18 \times -2} = \frac{-22}{36} \)
3. **List the converted fractions**:
- \( \frac{-28}{36}, \frac{-24}{36}, \frac{-22}{36}, \frac{-15}{36} \)
4. **Arrange in ascending order**:
- The order is \( \frac{-28}{36}, \frac{-24}{36}, \frac{-22}{36}, \frac{-15}{36} \).
5. **Replace with original fractions**:
- \( \frac{-7}{9}, \frac{-2}{3}, \frac{11}{-18}, \frac{5}{-12} \)
**Final Ascending Order**:
\[ \frac{-7}{9} < \frac{-2}{3} < \frac{11}{-18} < \frac{5}{-12} \]
---
### (iv) Arrange `-4/7, 13/(-28), 9/14, 23/42` in ascending order:
1. **Find the LCM of the denominators**: The denominators are -7, -28, 14, and 42. The LCM is 84.
2. **Convert each fraction to have a common denominator**:
- \( \frac{-4}{7} = \frac{-4 \times 12}{7 \times 12} = \frac{-48}{84} \)
- \( \frac{13}{-28} = \frac{13 \times -3}{-28 \times -3} = \frac{-39}{84} \)
- \( \frac{9}{14} = \frac{9 \times 6}{14 \times 6} = \frac{54}{84} \)
- \( \frac{23}{42} = \frac{23 \times 2}{42 \times 2} = \frac{46}{84} \)
3. **List the converted fractions**:
- \( \frac{-48}{84}, \frac{-39}{84}, \frac{46}{84}, \frac{54}{84} \)
4. **Arrange in ascending order**:
- The order is \( \frac{-48}{84}, \frac{-39}{84}, \frac{46}{84}, \frac{54}{84} \).
5. **Replace with original fractions**:
- \( \frac{-4}{7}, \frac{13}{-28}, \frac{23}{42}, \frac{9}{14} \)
**Final Ascending Order**:
\[ \frac{-4}{7} < \frac{13}{-28} < \frac{23}{42} < \frac{9}{14} \]
---
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Arrange the following fractions in ascending order: 5/(6), 7/(8), 11/(12), 3/(10)
Arrange the following fractions in ascending order : (i) 5/8, 7/12" (ii) "3/4, 5/12, 9/16 .
Arrange the following rational numbers in descending order: 4/9,\ (-5)/6,\ (-7)/(-12),(11)/(-24)
Arrange the following rational numbers in descending order : (i) 11/12, 13/18, 5/6, 7/9 , (ii) -11/20, 3/(-10), 17/(-30), -7/15 (iii) 9/(-24), -1, 2/(-3), -7/(-6) , (iv) 7/(-10), 11/15, -17/(-30), -2/5
Arrange the following fractions in descending order : (i) 3/4, 13/6, 7/12" (ii) "2/3, 8/15, 5/12, 13/16 .
Arrange the following rational numbers in ascending order: (i)3/5,(-17)/(-30),8/(-15),(-7)/(10) (ii) (-4)/9,5/(-12),7/(-18),2/(-3)
Arrange the following fractions in ascending order: (13)/(18),8/(15),(17)/(24),7/(12)
Arrange the following in descending order : (i) 2/9, 2/3, 8/21 (ii) 1/5, 3/7, 7/10
Write the following rational numbers in ascending order: (i) (-3)/5, (-2)/5, (-1)/5 (ii) (-1)/3, (-2)/9, (-4)/3 (iii) (-3)/7, (-3)/2, (-3)/4
Arrange the following fractions in the ascending order: (i) 2/9,7/9,3/9,4/9,1/9,6/9,5/9 (ii) 7/8,7/(25),7/(11),7/(18),7/(10)
ICSE-RATIONAL NUMBERS -EXERCISE 2B
- Which of the two rational numbers is greater in each of the following ...
Text Solution
|
- Fill in the blanks with the correct symbol out of gt, = or lt, (i) -...
Text Solution
|
- Arrange the following rational numbers in ascending order : (i) 3/4,...
Text Solution
|
- Arrange the following rational numbers in descending order : (i) 11/...
Text Solution
|