Arrange the following rational numbers in descending order :
(i) `11/12, 13/18, 5/6, 7/9`, (ii) `-11/20, 3/(-10), 17/(-30), -7/15`
(iii) `9/(-24), -1, 2/(-3), -7/(-6)`, (iv) `7/(-10), 11/15, -17/(-30), -2/5`
Arrange the following rational numbers in descending order :
(i) `11/12, 13/18, 5/6, 7/9`, (ii) `-11/20, 3/(-10), 17/(-30), -7/15`
(iii) `9/(-24), -1, 2/(-3), -7/(-6)`, (iv) `7/(-10), 11/15, -17/(-30), -2/5`
(i) `11/12, 13/18, 5/6, 7/9`, (ii) `-11/20, 3/(-10), 17/(-30), -7/15`
(iii) `9/(-24), -1, 2/(-3), -7/(-6)`, (iv) `7/(-10), 11/15, -17/(-30), -2/5`
Text Solution
AI Generated Solution
The correct Answer is:
To arrange the given rational numbers in descending order, we will follow these steps for each set of numbers:
### (i) Arrange `11/12, 13/18, 5/6, 7/9`
1. **Find the LCM of the denominators**: The denominators are 12, 18, 6, and 9. The LCM is 36.
2. **Convert each fraction to have the same denominator**:
- \( \frac{11}{12} = \frac{11 \times 3}{12 \times 3} = \frac{33}{36} \)
- \( \frac{13}{18} = \frac{13 \times 2}{18 \times 2} = \frac{26}{36} \)
- \( \frac{5}{6} = \frac{5 \times 6}{6 \times 6} = \frac{30}{36} \)
- \( \frac{7}{9} = \frac{7 \times 4}{9 \times 4} = \frac{28}{36} \)
3. **Compare the numerators**: Now we have \( \frac{33}{36}, \frac{26}{36}, \frac{30}{36}, \frac{28}{36} \).
4. **Arrange in descending order**:
- The largest is \( \frac{33}{36} \) (which is \( \frac{11}{12} \)),
- Next is \( \frac{30}{36} \) (which is \( \frac{5}{6} \)),
- Then \( \frac{28}{36} \) (which is \( \frac{7}{9} \)),
- Finally, \( \frac{26}{36} \) (which is \( \frac{13}{18} \)).
5. **Final answer**: \( \frac{11}{12}, \frac{5}{6}, \frac{7}{9}, \frac{13}{18} \)
### (ii) Arrange `-11/20, 3/(-10), 17/(-30), -7/15`
1. **Find the LCM of the denominators**: The denominators are 20, -10, -30, and -15. The LCM is 60.
2. **Convert each fraction to have the same denominator**:
- \( -\frac{11}{20} = -\frac{11 \times 3}{20 \times 3} = -\frac{33}{60} \)
- \( \frac{3}{-10} = -\frac{3 \times 6}{10 \times 6} = -\frac{18}{60} \)
- \( \frac{17}{-30} = -\frac{17 \times 2}{30 \times 2} = -\frac{34}{60} \)
- \( -\frac{7}{15} = -\frac{7 \times 4}{15 \times 4} = -\frac{28}{60} \)
3. **Compare the numerators**: Now we have \( -\frac{33}{60}, -\frac{18}{60}, -\frac{34}{60}, -\frac{28}{60} \).
4. **Arrange in descending order**:
- The least negative (greatest value) is \( -\frac{18}{60} \) (which is \( \frac{3}{-10} \)),
- Next is \( -\frac{28}{60} \) (which is \( -\frac{7}{15} \)),
- Then \( -\frac{33}{60} \) (which is \( -\frac{11}{20} \)),
- Finally, \( -\frac{34}{60} \) (which is \( \frac{17}{-30} \)).
5. **Final answer**: \( \frac{3}{-10}, -\frac{7}{15}, -\frac{11}{20}, \frac{17}{-30} \)
### (iii) Arrange `9/(-24), -1, 2/(-3), -7/(-6)`
1. **Find the LCM of the denominators**: The denominators are -24, 1, -3, and -6. The LCM is 24.
2. **Convert each fraction to have the same denominator**:
- \( \frac{9}{-24} = -\frac{9}{24} \)
- \( -1 = -\frac{24}{24} \)
- \( \frac{2}{-3} = -\frac{2 \times 8}{3 \times 8} = -\frac{16}{24} \)
- \( -\frac{7}{-6} = \frac{7 \times 4}{6 \times 4} = \frac{28}{24} \)
3. **Compare the numerators**: Now we have \( -\frac{9}{24}, -\frac{24}{24}, -\frac{16}{24}, \frac{28}{24} \).
4. **Arrange in descending order**:
- The largest is \( \frac{28}{24} \) (which is \( -\frac{7}{-6} \)),
- Next is \( -\frac{16}{24} \) (which is \( \frac{2}{-3} \)),
- Then \( -\frac{9}{24} \) (which is \( \frac{9}{-24} \)),
- Finally, \( -\frac{24}{24} \) (which is \( -1 \)).
5. **Final answer**: \( -\frac{7}{-6}, \frac{2}{-3}, \frac{9}{-24}, -1 \)
### (iv) Arrange `7/(-10), 11/15, -17/(-30), -2/5`
1. **Find the LCM of the denominators**: The denominators are -10, 15, -30, and -5. The LCM is 30.
2. **Convert each fraction to have the same denominator**:
- \( \frac{7}{-10} = -\frac{7 \times 3}{10 \times 3} = -\frac{21}{30} \)
- \( \frac{11}{15} = \frac{11 \times 2}{15 \times 2} = \frac{22}{30} \)
- \( \frac{-17}{-30} = \frac{17}{30} \)
- \( \frac{-2}{5} = -\frac{2 \times 6}{5 \times 6} = -\frac{12}{30} \)
3. **Compare the numerators**: Now we have \( -\frac{21}{30}, \frac{22}{30}, \frac{17}{30}, -\frac{12}{30} \).
4. **Arrange in descending order**:
- The largest is \( \frac{22}{30} \) (which is \( \frac{11}{15} \)),
- Next is \( \frac{17}{30} \) (which is \( -\frac{17}{-30} \)),
- Then \( -\frac{12}{30} \) (which is \( -\frac{2}{5} \)),
- Finally, \( -\frac{21}{30} \) (which is \( \frac{7}{-10} \)).
5. **Final answer**: \( \frac{11}{15}, \frac{-17}{-30}, -\frac{2}{5}, \frac{7}{-10} \)
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Arrange the following fractions in ascending order: 5/(6), 7/(8), 11/(12), 3/(10)
Arrange the following rational numbers in descending order: 4/9,\ (-5)/6,\ (-7)/(-12),(11)/(-24)
Arrange the following rational numbers in ascending order : (i) 3/4, 5/8, 11/16, 21/32 , (ii) -2/5, 7/(-10), -8/15, 17/(-30) (iii) 5/(-12), -2/3, -7/9, 11/(-18) , (iv) -4/7, 13/(-28), 9/14, 23/42
Arrange the following rational numbers in ascending order: (i)3/5,(-17)/(-30),8/(-15),(-7)/(10) (ii) (-4)/9,5/(-12),7/(-18),2/(-3)
Arrange the following rational numbers in descending order: (i)7/8,(64)/(16),(36)/(-12),5/(-4),(140)/(28) (ii) (-3)/(10),(17)/(-30),7/(-15),\ (-11)/(20)
Arrange the following in descending order : (i) 2/9, 2/3, 8/21 (ii) 1/5, 3/7, 7/10
Arrange the fractions in descending order: 7/(12), 11/(15), 35/(42)
Arrange the following fractions in ascending order: (13)/(18),8/(15),(17)/(24),7/(12)
Arrange the following fractions in the ascending order: (i) 2/9,7/9,3/9,4/9,1/9,6/9,5/9 (ii) 7/8,7/(25),7/(11),7/(18),7/(10)
Write the following fractions in descending order: 2/(5), 6/(5), 3/(7), 11/(3), 2(2)/(3)
ICSE-RATIONAL NUMBERS -EXERCISE 2B
- Which of the two rational numbers is greater in each of the following ...
Text Solution
|
- Fill in the blanks with the correct symbol out of gt, = or lt, (i) -...
Text Solution
|
- Arrange the following rational numbers in ascending order : (i) 3/4,...
Text Solution
|
- Arrange the following rational numbers in descending order : (i) 11/...
Text Solution
|