Home
Class 7
MATHS
Evaluate: (i) 5/6-7/8, (ii) 5/12 -17/1...

Evaluate:
(i) `5/6-7/8`, (ii) `5/12 -17/18`, (iii) `11/15 - 13/20`, (iv) `-5/9 - (-2/3)`, (v) `6/11 -(-3/4)`, (vi) `-2/3 -3/4`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate each part of the question step by step. ### (i) Evaluate \( \frac{5}{6} - \frac{7}{8} \) 1. **Find the LCM of the denominators (6 and 8)**: - The multiples of 6 are 6, 12, 18, 24, ... - The multiples of 8 are 8, 16, 24, ... - The LCM is **24**. 2. **Convert each fraction to have the common denominator**: - \( \frac{5}{6} = \frac{5 \times 4}{6 \times 4} = \frac{20}{24} \) - \( \frac{7}{8} = \frac{7 \times 3}{8 \times 3} = \frac{21}{24} \) 3. **Subtract the fractions**: - \( \frac{20}{24} - \frac{21}{24} = \frac{20 - 21}{24} = \frac{-1}{24} \) **Final Answer for (i)**: \( \frac{-1}{24} \) ### (ii) Evaluate \( \frac{5}{12} - \frac{17}{18} \) 1. **Find the LCM of the denominators (12 and 18)**: - The multiples of 12 are 12, 24, 36, ... - The multiples of 18 are 18, 36, ... - The LCM is **36**. 2. **Convert each fraction to have the common denominator**: - \( \frac{5}{12} = \frac{5 \times 3}{12 \times 3} = \frac{15}{36} \) - \( \frac{17}{18} = \frac{17 \times 2}{18 \times 2} = \frac{34}{36} \) 3. **Subtract the fractions**: - \( \frac{15}{36} - \frac{34}{36} = \frac{15 - 34}{36} = \frac{-19}{36} \) **Final Answer for (ii)**: \( \frac{-19}{36} \) ### (iii) Evaluate \( \frac{11}{15} - \frac{13}{20} \) 1. **Find the LCM of the denominators (15 and 20)**: - The multiples of 15 are 15, 30, 45, 60, ... - The multiples of 20 are 20, 40, 60, ... - The LCM is **60**. 2. **Convert each fraction to have the common denominator**: - \( \frac{11}{15} = \frac{11 \times 4}{15 \times 4} = \frac{44}{60} \) - \( \frac{13}{20} = \frac{13 \times 3}{20 \times 3} = \frac{39}{60} \) 3. **Subtract the fractions**: - \( \frac{44}{60} - \frac{39}{60} = \frac{44 - 39}{60} = \frac{5}{60} \) - Simplifying \( \frac{5}{60} \) gives \( \frac{1}{12} \). **Final Answer for (iii)**: \( \frac{1}{12} \) ### (iv) Evaluate \( -\frac{5}{9} - (-\frac{2}{3}) \) 1. **Rewrite the expression**: - \( -\frac{5}{9} + \frac{2}{3} \) 2. **Find the LCM of the denominators (9 and 3)**: - The multiples of 9 are 9, 18, ... - The multiples of 3 are 3, 6, 9, ... - The LCM is **9**. 3. **Convert each fraction to have the common denominator**: - \( -\frac{5}{9} \) remains \( -\frac{5}{9} \) - \( \frac{2}{3} = \frac{2 \times 3}{3 \times 3} = \frac{6}{9} \) 4. **Add the fractions**: - \( -\frac{5}{9} + \frac{6}{9} = \frac{-5 + 6}{9} = \frac{1}{9} \) **Final Answer for (iv)**: \( \frac{1}{9} \) ### (v) Evaluate \( \frac{6}{11} - (-\frac{3}{4}) \) 1. **Rewrite the expression**: - \( \frac{6}{11} + \frac{3}{4} \) 2. **Find the LCM of the denominators (11 and 4)**: - The multiples of 11 are 11, 22, 33, ... - The multiples of 4 are 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ... - The LCM is **44**. 3. **Convert each fraction to have the common denominator**: - \( \frac{6}{11} = \frac{6 \times 4}{11 \times 4} = \frac{24}{44} \) - \( \frac{3}{4} = \frac{3 \times 11}{4 \times 11} = \frac{33}{44} \) 4. **Add the fractions**: - \( \frac{24}{44} + \frac{33}{44} = \frac{24 + 33}{44} = \frac{57}{44} \) **Final Answer for (v)**: \( \frac{57}{44} \) ### (vi) Evaluate \( -\frac{2}{3} - \frac{3}{4} \) 1. **Find the LCM of the denominators (3 and 4)**: - The multiples of 3 are 3, 6, 9, 12, ... - The multiples of 4 are 4, 8, 12, ... - The LCM is **12**. 2. **Convert each fraction to have the common denominator**: - \( -\frac{2}{3} = -\frac{2 \times 4}{3 \times 4} = -\frac{8}{12} \) - \( -\frac{3}{4} = -\frac{3 \times 3}{4 \times 3} = -\frac{9}{12} \) 3. **Add the fractions**: - \( -\frac{8}{12} - \frac{9}{12} = \frac{-8 - 9}{12} = \frac{-17}{12} \) **Final Answer for (vi)**: \( \frac{-17}{12} \) ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2E|7 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2F|10 Videos
  • RATIONAL NUMBERS

    ICSE|Exercise EXERCISE 2C|4 Videos
  • RATIO AND PROPORTION

    ICSE|Exercise Challenge |1 Videos
  • REPRESENTING 3 - D IN 2- D

    ICSE|Exercise EXERCISE 20 B |1 Videos

Similar Questions

Explore conceptually related problems

Find (i) 7/24-17/36 (ii) 5/63-((-6)/21) (iii) (-6)/13-7/11 (iv) -2/9 -6

Evaluate: -3/8 + 5/8 + 7/8 , (ii) 11/3 + -5/3 + -2/3 , (iii) -1+ 2/(-3) + 5/6 , (iv) 7/26 + (-11)/13 + 2 , (v) 3+(-7/8) + -3/4 , (vi) -13/8 + 7/16 + (-3)/4

Evaluate: (i) 2/(-3) + -4/9 , (ii) =1/2 + -3/4 , (iii) 7/-9 + -5/6 (iv) 2 + -3/4 , (v) 3 + -5/6 , (vi) -4 + 2/3

Evalaute: (i) 7/12 + -4/3 , (ii) -12/25 + -5/6 , (iii) -27/32 + (-9/16) (iv) -18 + 6/5 , (v) 26 + (-1/13) (vi) 1/25 + -5

Add the following rational numbers: (i) -2/3 and 3/4 , (ii) -4/9 and 5/6 , (iii) -5/18 and 11/27 (iv) -7/12 and -5/24 , (v) -1/18 and -7/27 , (vi) 21/(-4) and -11/8

Find the value of x such that: (i) -2/3=14/x , (ii) 8/-3 = x/6 , (iii) 5/9 = x/(-27) (iv) 11/6 = -55/x , (v) 15/x =-3 , (vi) -36/x =2

Add the following rational numbers: (i) 5/11 and 4/11 , (ii) -3/8 and 5/8 , (iii) -6/13 and 8/13 , (iv) -8/15 and -7/15 , (v) -13/20 and 17/20 , (vi) -3/8 and 5/(-8)

Subtact: (i) 3/5 from 1/2 , (ii) -4/7 from 2/3 , (iii) -5/6 from -3/4 , (iv) -7/9 from 0, (v) 4 from -6/11 , (vi) 3/8 from -5/6

Simplify: (i) 5/12 xx (-36) , (ii) -17/18 xx 12 , (iii) -5/6 xx 6/5 , (iv) -14 xx 9/28 , (v) -12/5 xx (-15) , (vi) -3/4 by 8/7 , (v) -16/9 by 12/-5 , (vi) 35/(-8) by 12/(-5) (vii) -3/10 by -40/9 , (viii) -32/5 by 15/(-16) , (ix) -8/15 by -25/32

Find the value of: (i) (-4) -: 2/3 (ii) (-3)/5 -: 2 (iii) (-4)/5 -: (-3) (iv) (-1)/8 -: 3/4 (v) (-2)/(13) -: 1/7 (vi) (-7)/(12) -: ((-2)/(13)) (vii) 3/(13) -: ((-4)/(65))