Home
Class 11
MATHS
If theta=20^(@), then 8cos^(3)theta-6 co...

If `theta=20^(@)`, then `8cos^(3)theta-6 cos theta` is

A

`-1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( 8 \cos^3 \theta - 6 \cos \theta \) for \( \theta = 20^\circ \). ### Step-by-Step Solution: 1. **Identify the expression**: We have \( 8 \cos^3 \theta - 6 \cos \theta \). 2. **Use the cosine identity**: We know from trigonometric identities that: \[ \cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta \] We can rearrange this identity to express \( 8 \cos^3 \theta - 6 \cos \theta \) in terms of \( \cos 3\theta \). 3. **Rearranging the identity**: Multiply the identity by 2: \[ 2 \cos 3\theta = 2(4 \cos^3 \theta - 3 \cos \theta) = 8 \cos^3 \theta - 6 \cos \theta \] Thus, we can rewrite our expression as: \[ 8 \cos^3 \theta - 6 \cos \theta = 2 \cos 3\theta \] 4. **Substituting \( \theta \)**: Now substitute \( \theta = 20^\circ \): \[ 8 \cos^3(20^\circ) - 6 \cos(20^\circ) = 2 \cos(3 \times 20^\circ) = 2 \cos(60^\circ) \] 5. **Calculating \( \cos(60^\circ) \)**: We know that: \[ \cos(60^\circ) = \frac{1}{2} \] 6. **Final Calculation**: Now substitute \( \cos(60^\circ) \) back into the expression: \[ 2 \cos(60^\circ) = 2 \times \frac{1}{2} = 1 \] ### Final Answer: Thus, the value of \( 8 \cos^3(20^\circ) - 6 \cos(20^\circ) \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - A |19 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B (In sub-parts (i) and (ii) choose the correct option and in sub - parts (iii) to (v), answer the questions as instructed.)|5 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If theta=(pi)/(7), show that cos theta cos 2theta cos 3 theta = (1)/(8) .

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2)theta,cos theta),(sin theta,-cos theta,0)| then, f((pi)/(6))+f((pi)/(3))+f((pi)/(2))+f((2pi)/(3))+f((5pi)/(6))+f(pi)+……+f((53pi)/(6)) is equal to

Prove that 16 cos ^(5) theta - 20 cos ^(3) theta + 5 cos theta = cos 5 theta.

Prove (cos 3theta+ 2 cos 5theta+ cos 7theta)/( cos theta+ 2 cos 3theta+ cos 5theta)= cos 2theta- sin 2theta tan 3theta .

If cos 5theta=a cos theta+ b cos^(3) theta+c cos^(5)theta+d , then

Find the value of cos theta. cos 2theta. cos 2^(2)theta . cos 2^(3)theta"……." cos 2^(n-1) theta is

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if