Home
Class 11
MATHS
If alpha and beta are the roots of the e...

If `alpha` and `beta` are the roots of the equations `x^(2)-2x-1=0`, then what is the value of `alpha^(2)beta^(-2)+beta^(2)alpha^(-2)`

A

`-2`

B

0

C

30

D

34

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^2 \beta^{-2} + \beta^2 \alpha^{-2} \) given that \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - 2x - 1 = 0 \). ### Step-by-step Solution: 1. **Find the roots \( \alpha \) and \( \beta \)**: We can use the quadratic formula to find the roots of the equation \( x^2 - 2x - 1 = 0 \). \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -2, c = -1 \). \[ x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2} \] Thus, the roots are: \[ \alpha = 1 + \sqrt{2}, \quad \beta = 1 - \sqrt{2} \] 2. **Calculate \( \alpha^2 \) and \( \beta^2 \)**: \[ \alpha^2 = (1 + \sqrt{2})^2 = 1 + 2\sqrt{2} + 2 = 3 + 2\sqrt{2} \] \[ \beta^2 = (1 - \sqrt{2})^2 = 1 - 2\sqrt{2} + 2 = 3 - 2\sqrt{2} \] 3. **Calculate \( \alpha^2 \beta^{-2} + \beta^2 \alpha^{-2} \)**: We can rewrite the expression: \[ \alpha^2 \beta^{-2} + \beta^2 \alpha^{-2} = \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} \] Let \( z = \frac{\alpha^2}{\beta^2} \). Then: \[ z + \frac{1}{z} = \frac{\alpha^4 + \beta^4}{\alpha^2 \beta^2} \] 4. **Find \( \alpha^4 + \beta^4 \)**: We can use the identity: \[ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2 \beta^2 \] First, we need \( \alpha^2 + \beta^2 \): \[ \alpha + \beta = 2 \quad \text{and} \quad \alpha \beta = -1 \] Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta = 2^2 - 2(-1) = 4 + 2 = 6 \] Now, substituting: \[ \alpha^4 + \beta^4 = 6^2 - 2(-1)^2 = 36 - 2 = 34 \] 5. **Find \( \alpha^2 \beta^2 \)**: \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = (-1)^2 = 1 \] 6. **Final calculation**: Now substituting back: \[ z + \frac{1}{z} = \frac{34}{1} = 34 \] Thus, the value of \( \alpha^2 \beta^{-2} + \beta^2 \alpha^{-2} \) is \( 34 \). ### Final Answer: \[ \boxed{34} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - A |19 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B (In sub-parts (i) and (ii) choose the correct option and in sub - parts (iii) to (v), answer the questions as instructed.)|5 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

If alpha,beta be the roots of the equation x^(2)-x-1=0 , determine the value of i) alpha^(2)+beta^(2) and (ii) alpha^(3)+beta^(3) .

If alpha and beta are the roots of the equation x^(2)+x-7=0 , form the equation whose roots are alpha^(2) and beta^(2) .

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2