Home
Class 11
MATHS
Evaluate : (2-omega^(100))(2-omega^(101)...

Evaluate : `(2-omega^(100))(2-omega^(101))(2-omega^(10))(2-omega^(11))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((2 - \omega^{100})(2 - \omega^{101})(2 - \omega^{10})(2 - \omega^{11})\), we will use the properties of \(\omega\), where \(\omega\) is a primitive cube root of unity. We know that: 1. \(\omega^3 = 1\) 2. \(\omega^2 + \omega + 1 = 0\) ### Step 1: Simplifying \(\omega^{100}\) and \(\omega^{101}\) First, we simplify \(\omega^{100}\) and \(\omega^{101}\): - \(\omega^{100} = \omega^{3 \cdot 33 + 1} = (\omega^3)^{33} \cdot \omega^1 = 1^{33} \cdot \omega = \omega\) - \(\omega^{101} = \omega^{3 \cdot 33 + 2} = (\omega^3)^{33} \cdot \omega^2 = 1^{33} \cdot \omega^2 = \omega^2\) ### Step 2: Simplifying \(\omega^{10}\) and \(\omega^{11}\) Next, we simplify \(\omega^{10}\) and \(\omega^{11}\): - \(\omega^{10} = \omega^{3 \cdot 3 + 1} = (\omega^3)^3 \cdot \omega^1 = 1^3 \cdot \omega = \omega\) - \(\omega^{11} = \omega^{3 \cdot 3 + 2} = (\omega^3)^3 \cdot \omega^2 = 1^3 \cdot \omega^2 = \omega^2\) ### Step 3: Substitute the values into the expression Now we substitute these values back into the original expression: \[ (2 - \omega)(2 - \omega^2)(2 - \omega)(2 - \omega^2) \] This can be rewritten as: \[ (2 - \omega)^2(2 - \omega^2)^2 \] ### Step 4: Calculate \((2 - \omega)(2 - \omega^2)\) Next, we need to calculate \((2 - \omega)(2 - \omega^2)\): \[ (2 - \omega)(2 - \omega^2) = 2^2 - 2(\omega + \omega^2) + \omega \cdot \omega^2 \] Using the property \(\omega + \omega^2 = -1\) and \(\omega \cdot \omega^2 = \omega^3 = 1\): \[ = 4 - 2(-1) + 1 = 4 + 2 + 1 = 7 \] ### Step 5: Final calculation Now we substitute back into our expression: \[ (2 - \omega)^2(2 - \omega^2)^2 = (7)^2 = 49 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{49} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - A |19 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B (In sub-parts (i) and (ii) choose the correct option and in sub - parts (iii) to (v), answer the questions as instructed.)|5 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If 1, omega and omega^(2) are the cube roots of unity evaluate (1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)) .

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

Prove that (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)).... to 2^(n) factors = 2^(2n) .

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega is a non-real complex cube root of unity, find the values of the following. (i) omega^(1999) (ii) omega^(998) (iii) ((-1+isqrt(3))/2)^(3n+2),ninNand i=sqrt(-1) (iv) (1+omega)(1+omega )^(2)(1+omega)^(4)(1+omega)^(8) ...upto 2n factors (v) ((alpha+betaomega+gammaomega^(2)+deltaomega^(2))/(beta+alphaomega^(2)+gammaomega+deltaomega))," where "alpha,beta,gamma,delta, in R (vi) 1*(2-omega)(2-omega^(2))+2*(3-omega)(3-omega^(2))+3*(4-omega)(4-omega^(2))+...+...+(n-1)*(n-omega)(n-omega^(2))

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8)) …. to 2n factors = 2^(2n) where , ω is the cube root of unity.

If omega!=1 is a cube root of unity, then find the value of |[1+2omega^100+omega^200,omega^2,1],[1,1+omega^100+2omega^200,omega],[omega,omega^2,2+omega^100+omega^200]|