Home
Class 11
MATHS
Find the parametic equation of the circl...

Find the parametic equation of the circle : `x^(2)+y^(2)+px+qy=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the parametric equations of the circle given by the equation \(x^2 + y^2 + px + qy = 0\), we will follow these steps: ### Step 1: Rewrite the Circle Equation We start with the equation: \[ x^2 + y^2 + px + qy = 0 \] We can rearrange this equation to prepare for completing the square. ### Step 2: Complete the Square We will complete the square for both \(x\) and \(y\): 1. For \(x\): \[ x^2 + px = \left(x + \frac{p}{2}\right)^2 - \frac{p^2}{4} \] 2. For \(y\): \[ y^2 + qy = \left(y + \frac{q}{2}\right)^2 - \frac{q^2}{4} \] Now substituting these back into the original equation gives: \[ \left(x + \frac{p}{2}\right)^2 - \frac{p^2}{4} + \left(y + \frac{q}{2}\right)^2 - \frac{q^2}{4} = 0 \] ### Step 3: Simplify the Equation Rearranging the equation, we have: \[ \left(x + \frac{p}{2}\right)^2 + \left(y + \frac{q}{2}\right)^2 = \frac{p^2 + q^2}{4} \] ### Step 4: Identify the Center and Radius From the equation \(\left(x + \frac{p}{2}\right)^2 + \left(y + \frac{q}{2}\right)^2 = r^2\), we can identify: - Center \((x_1, y_1) = \left(-\frac{p}{2}, -\frac{q}{2}\right)\) - Radius \(r = \sqrt{\frac{p^2 + q^2}{4}} = \frac{\sqrt{p^2 + q^2}}{2}\) ### Step 5: Write the Parametric Equations The parametric equations of the circle can be expressed as: \[ x = x_1 + r \cos \theta \] \[ y = y_1 + r \sin \theta \] Substituting the values of \(x_1\), \(y_1\), and \(r\): \[ x = -\frac{p}{2} + \frac{\sqrt{p^2 + q^2}}{2} \cos \theta \] \[ y = -\frac{q}{2} + \frac{\sqrt{p^2 + q^2}}{2} \sin \theta \] ### Final Parametric Equations Thus, the parametric equations of the circle are: \[ x = -\frac{p}{2} + \frac{\sqrt{p^2 + q^2}}{2} \cos \theta \] \[ y = -\frac{q}{2} + \frac{\sqrt{p^2 + q^2}}{2} \sin \theta \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - A |19 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B (In sub-parts (i) and (ii) choose the correct option and in sub - parts (iii) to (v), answer the questions as instructed.)|5 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Find the parametric equation of the circles : x^2 +y^2 =9

Find the parametric equations of the circles x^(2)+y^(2)=16 .

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

Find the parametic equation of the circle x^(2)+y^(2)=25 in terms of parameter 'theta' .

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0

Find the parametric form of the equation of the circle x^2+y^2+p x+p y=0.

Find the parametric form of the equation of the circle x^2+y^2+p x+p y=0.

Find the equation of image circle of the circle x^(2)+y^(2)-2x=0 in the line x+y-2=0