Home
Class 12
MATHS
Value of cos^(-1) (-(1)/(2)) + sin ^(-1)...

Value of `cos^(-1) (-(1)/(2)) + sin ^(-1)""(1)/(2)` is: a) `2 pi` b) `(pi)/(2)` c) `pi` d) none of these

A

`2 pi`

B

`(pi)/(2)`

C

`pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(\frac{1}{2}) \), we will break it down step by step. ### Step 1: Evaluate \( \cos^{-1}(-\frac{1}{2}) \) The cosine function is negative in the second quadrant. The angle whose cosine is \(-\frac{1}{2}\) is \( \frac{2\pi}{3} \) (or \( 120^\circ \)). Therefore: \[ \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3} \] ### Step 2: Evaluate \( \sin^{-1}(\frac{1}{2}) \) The sine function is positive in the first quadrant. The angle whose sine is \(\frac{1}{2}\) is \( \frac{\pi}{6} \) (or \( 30^\circ \)). Therefore: \[ \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \] ### Step 3: Add the two results Now we add the two angles we found: \[ \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(\frac{1}{2}) = \frac{2\pi}{3} + \frac{\pi}{6} \] ### Step 4: Find a common denominator To add these fractions, we need a common denominator. The least common multiple of 3 and 6 is 6. We convert \( \frac{2\pi}{3} \) to have a denominator of 6: \[ \frac{2\pi}{3} = \frac{4\pi}{6} \] Now we can add: \[ \frac{4\pi}{6} + \frac{\pi}{6} = \frac{4\pi + \pi}{6} = \frac{5\pi}{6} \] ### Final Answer Thus, the value of \( \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(\frac{1}{2}) \) is: \[ \frac{5\pi}{6} \] Since \( \frac{5\pi}{6} \) is not listed among the options a) \( 2\pi \), b) \( \frac{\pi}{2} \), c) \( \pi \), d) none of these, the correct choice is: **d) none of these.**
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. -(3pi)/2

The value of sin^(-1)(-sqrt3/2)+cos^(-1)(cos\ (7pi)/6) is a. (5pi)/6 b. pi/2 c. (3pi)/2 d. none of these

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (4pi)/3 (d) (5pi)/3 (e) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to pi (b) 2pi (c) pi/2 (d) none of these