Home
Class 12
MATHS
If P(X) = (3)/( 10) , P(Y) = (2)/(5) an...

If ` P(X) = (3)/( 10) , P(Y) = (2)/(5) and P(X cupY) = (3)/(5) , "then " P((Y)/(X)) + P ((X)/(Y))` equals

A

`(1)/(4)`

B

`(1)/(3)`

C

`(5)/(12)`

D

`(7)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P\left(\frac{Y}{X}\right) + P\left(\frac{X}{Y}\right) \) given: - \( P(X) = \frac{3}{10} \) - \( P(Y) = \frac{2}{5} \) - \( P(X \cup Y) = \frac{3}{5} \) ### Step 1: Find \( P(X \cap Y) \) Using the formula for the probability of the union of two events: \[ P(X \cup Y) = P(X) + P(Y) - P(X \cap Y) \] Substituting the known values: \[ \frac{3}{5} = \frac{3}{10} + \frac{2}{5} - P(X \cap Y) \] ### Step 2: Convert \( P(Y) \) to a common denominator To perform the addition, we need a common denominator. The common denominator for \( \frac{3}{10} \) and \( \frac{2}{5} \) is 10. Convert \( \frac{2}{5} \): \[ \frac{2}{5} = \frac{4}{10} \] ### Step 3: Substitute and solve for \( P(X \cap Y) \) Now substitute back into the equation: \[ \frac{3}{5} = \frac{3}{10} + \frac{4}{10} - P(X \cap Y) \] Combine the fractions on the right side: \[ \frac{3}{5} = \frac{7}{10} - P(X \cap Y) \] Now convert \( \frac{3}{5} \) to a fraction with a denominator of 10: \[ \frac{3}{5} = \frac{6}{10} \] So we have: \[ \frac{6}{10} = \frac{7}{10} - P(X \cap Y) \] Rearranging gives: \[ P(X \cap Y) = \frac{7}{10} - \frac{6}{10} = \frac{1}{10} \] ### Step 4: Calculate \( P\left(\frac{Y}{X}\right) \) and \( P\left(\frac{X}{Y}\right) \) Using the definitions of conditional probability: \[ P\left(\frac{Y}{X}\right) = \frac{P(X \cap Y)}{P(X)} = \frac{\frac{1}{10}}{\frac{3}{10}} = \frac{1}{3} \] \[ P\left(\frac{X}{Y}\right) = \frac{P(X \cap Y)}{P(Y)} = \frac{\frac{1}{10}}{\frac{2}{5}} = \frac{1}{10} \cdot \frac{5}{2} = \frac{1}{4} \] ### Step 5: Add the two probabilities Now we add the two probabilities: \[ P\left(\frac{Y}{X}\right) + P\left(\frac{X}{Y}\right) = \frac{1}{3} + \frac{1}{4} \] ### Step 6: Find a common denominator to add The common denominator for 3 and 4 is 12: \[ \frac{1}{3} = \frac{4}{12}, \quad \frac{1}{4} = \frac{3}{12} \] Now add them: \[ P\left(\frac{Y}{X}\right) + P\left(\frac{X}{Y}\right) = \frac{4}{12} + \frac{3}{12} = \frac{7}{12} \] ### Final Answer Thus, the final answer is: \[ P\left(\frac{Y}{X}\right) + P\left(\frac{X}{Y}\right) = \frac{7}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

If P(A)=3/10,P(B)=2/5 and P(AcupB)=3/5 then P(B/A)+P(A/B) equals to

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If X and Y are two events such that PX//Y)=(1)/(2), P(Y//X)=(1)/(3) and P(XcapY)(1)/(6) . Then, which of the following is/are correct ?

Suppose X ~ B(n,p) and P(X=3) = P(X=5) . If P gt (1)/(2)

If the angle between the lines, x/2=y/2=z/1 and (5-x)/(-2) = (7y-14)/(p ) = (z-3)/(4) is cos ^(-1) ((2)/(3)), then P is equal to

If p(x)=4x^(2)-3x+6 find : (i) p(4) (ii) p(-5)

If p (x) = x ^(2) -4x+8 and q 9x)=x-3, what is the value of (q (p (5)))/(p (q (5))) ?

If P(x) =x+3, then p(x)+p(-x) is equal to

if p = (4xy)/(x + y) , find the value of (p+2x)/(p-2x) + (p+2y)/(p-2y) .