Home
Class 12
MATHS
If two angles of a triangle are tan^(-1)...

If two angles of a triangle are `tan^(-1) ""(1)/(2) and tan^(-1)"" (1)/(3)` . Then the third angle is

A

`(pi)/(4)`

B

`(5 pi)/(4)`

C

`(pi)/(2)`

D

`(3 pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the third angle of the triangle given the first two angles as \( \tan^{-1} \left( \frac{1}{2} \right) \) and \( \tan^{-1} \left( \frac{1}{3} \right) \), we can follow these steps: ### Step 1: Understand the sum of angles in a triangle The sum of all angles in a triangle is \( 180^\circ \) or \( \pi \) radians. Let the third angle be \( x \). ### Step 2: Set up the equation We can write the equation for the sum of angles: \[ \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) + x = \pi \] From this, we can express \( x \) as: \[ x = \pi - \left( \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) \right) \] ### Step 3: Use the formula for the sum of arctangents We can use the formula for the sum of two arctangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] Here, let \( a = \frac{1}{2} \) and \( b = \frac{1}{3} \). ### Step 4: Calculate \( a + b \) and \( 1 - ab \) Calculating \( a + b \): \[ a + b = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] Calculating \( 1 - ab \): \[ ab = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \quad \Rightarrow \quad 1 - ab = 1 - \frac{1}{6} = \frac{5}{6} \] ### Step 5: Substitute into the formula Now we can substitute into the formula: \[ \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) = \tan^{-1} \left( \frac{\frac{5}{6}}{\frac{5}{6}} \right) = \tan^{-1}(1) \] ### Step 6: Find the angle Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) = \frac{\pi}{4} \] ### Step 7: Substitute back to find \( x \) Now substitute back to find \( x \): \[ x = \pi - \frac{\pi}{4} = \frac{4\pi}{4} - \frac{\pi}{4} = \frac{3\pi}{4} \] ### Conclusion Thus, the third angle \( x \) is: \[ \boxed{\frac{3\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

If two angles of a triangle are tan^(-1) (2) and tan^(-1) (3) , then find the third angles

If two angles of a triangle are tan^(-1)(2)a n dtan^(-1)(3), then find the third angle.

Evaluate tan^(-1).(1)/(2)+ tan^(-1).(1)/(3) .

Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third angle is

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

The vlaue of tan^(-1)1/2+tan^(-1)1/3 is

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Simplify : tan ^(−1)(1/2)+tan ^(−1) (1/3).

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

If two vertices of a triangle are (1,3) and (4,-1) and the area of triangle is 5 sq. units, then the angle at the third vertex lies in :