Home
Class 12
MATHS
Write as a single matrix : (1 - 2 " "3 )...

Write as a single matrix : `(1 - 2 " "3 ) ({:(2,-1,5),(0,2,4),(-7,5,0):})- (2" " - 5 " "7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the given expression as a single matrix. The expression is: \[ (1 - 2 \quad 3) \cdot \begin{pmatrix} 2 & -1 & 5 \\ 0 & 2 & 4 \\ -7 & 5 & 0 \end{pmatrix} - (2 \quad -5 \quad 7) \] ### Step 1: Identify the matrices involved We have two matrices: 1. A row matrix \( A = (1, -2, 3) \) 2. A square matrix \( B = \begin{pmatrix} 2 & -1 & 5 \\ 0 & 2 & 4 \\ -7 & 5 & 0 \end{pmatrix} \) 3. Another row matrix \( C = (2, -5, 7) \) ### Step 2: Perform the matrix multiplication \( A \cdot B \) To find \( A \cdot B \), we will calculate each element of the resulting matrix. - **First element**: \[ 1 \cdot 2 + (-2) \cdot 0 + 3 \cdot (-7) = 2 + 0 - 21 = -19 \] - **Second element**: \[ 1 \cdot (-1) + (-2) \cdot 2 + 3 \cdot 5 = -1 - 4 + 15 = 10 \] - **Third element**: \[ 1 \cdot 5 + (-2) \cdot 4 + 3 \cdot 0 = 5 - 8 + 0 = -3 \] Thus, the result of the multiplication \( A \cdot B \) is: \[ A \cdot B = (-19, 10, -3) \] ### Step 3: Subtract matrix \( C \) from the result of \( A \cdot B \) Now we need to subtract matrix \( C \) from the result of \( A \cdot B \): \[ (-19, 10, -3) - (2, -5, 7) \] We perform the subtraction element-wise: - **First element**: \[ -19 - 2 = -21 \] - **Second element**: \[ 10 - (-5) = 10 + 5 = 15 \] - **Third element**: \[ -3 - 7 = -10 \] ### Final Result Thus, the final matrix is: \[ \begin{pmatrix} -21 & 15 & -10 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

Write as a single matrix: ((-1,2,3))((-2,-1,5),(0,-1,4),(7,0,5))-2((4,-5,-7))

The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:} , is

Wherever possible write each of the following as a single matrix. (i) [{:(,1,2),(,3,4):}]+[{:(,-1,-2),(,1,-7):}] (ii) [{:(,2,3,4),(,5,6,7):}]-[{:(,0,2,3),(,6,-1,0):}] (iii) [{:(,0,1,2),(,4,6,7):}]+[{:(,3,4),(,6,8):}]

FInd matrix X, if X+[(2,5),(3,2)]=[(4,0),(-7,6)]

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

Write the cofactor of a_(12) in the matrix [[2,-3, 5],[ 6, 0, 4],[ 4, 5,-7]]

Express the matrix A = [{:(4, 2,-1),(3,5,7),(1,-2,1):} ] as the sum of a symmetric and a skew-symmetric matrix.

Verify Property 1 for Delta=|(2,-3 ,5),(6, 0 ,4 ),(1,5,-7)|