Home
Class 12
MATHS
If P(not A) = 0.7, P(B) = 0.7 and P((B)/...

If P(not A) = 0.7, P(B) = 0.7 and `P((B)/(A)) =` 0. 5 then find P `((A)/(B)) and P (A cup B) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(A|B) \) and \( P(A \cup B) \) given the following probabilities: - \( P(\neg A) = 0.7 \) - \( P(B) = 0.7 \) - \( P(B|A) = 0.5 \) ### Step 1: Find \( P(A) \) We know that: \[ P(A) = 1 - P(\neg A) \] Substituting the given value: \[ P(A) = 1 - 0.7 = 0.3 \] ### Step 2: Find \( P(A \cap B) \) We can use the formula for conditional probability: \[ P(B|A) = \frac{P(A \cap B)}{P(A)} \] Rearranging gives us: \[ P(A \cap B) = P(B|A) \times P(A) \] Now substituting the known values: \[ P(A \cap B) = 0.5 \times 0.3 = 0.15 \] ### Step 3: Find \( P(A \cup B) \) Using the formula for the union of two events: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substituting the values we have: \[ P(A \cup B) = 0.3 + 0.7 - 0.15 \] Calculating this gives: \[ P(A \cup B) = 1.0 - 0.15 = 0.85 \] ### Step 4: Find \( P(A|B) \) Using the formula for conditional probability again: \[ P(A|B) = \frac{P(A \cap B)}{P(B)} \] Substituting the known values: \[ P(A|B) = \frac{0.15}{0.7} \] Calculating this gives: \[ P(A|B) = \frac{15}{70} = \frac{3}{14} \approx 0.2143 \] ### Final Results Thus, we have: - \( P(A|B) \approx 0.2143 \) - \( P(A \cup B) = 0.85 \)
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

If P(notA) =0. 7 ,P(B)=0.7 a n dP(B//A)=0. 5 , then find P(A//B)a n dP(AuuB)dot

If P(A)=0.3, P(B)=0.6 and P(A//B)=0.4 then find: (i) P(AnnB) (ii) P(B//A)

If P(A)=0. 4 ,P(B)=0. 3 and P(B/A)=0. 5 , find P(AnnB) and P(A/B)dot

If A and B are two events such that P(A)=0. 3 ,\ P(B)=0. 6\ a n d\ P(B//A) =0. 5 find P(A//B)\ a n d\ P(AuuB)dot

If P (A) = 0. 8 , P(B) = 0. 5 and P(B|A) = 0. 4 , find (i) P(AnnB) (ii) P(A|B) (iii) P(AuuB)

If P (A) = 0. 8 , P(B) = 0. 5 and P(B|A) = 0. 4 , find (i) P(AnnB) (ii) P(A|B) (iii) P(AuuB)

If P(A)=0.4,P(B)=0.8 and P(B/A)=0.6, then P(AcupB) is equal to

If A and B are two events such that P (A) = 0.3, P (B) = 0.6 and P ((B)/(A)) = 0.5 find P (A cup B)

If P(A)=0. 4 ,\ P(B)=0. 3\ a n d\ P(B//A)=0. 5 , find P(AnnB)\ a n d\ P(A//B)dot

If P(A)=0. 3 ,\ P(B)=0. 6 ,\ P(B//A)=0. 5 , find P(AuuB) .