Home
Class 12
MATHS
Find vec(a) * vec(b) if |vec(a)| = 6, |v...

Find `vec(a) * vec(b) if |vec(a)| = 6, |vec(b)| = 4 and |vec(a) xx vec(b)| = 12 `

Text Solution

AI Generated Solution

The correct Answer is:
To find the dot product \( \vec{a} \cdot \vec{b} \) given the magnitudes of the vectors and the magnitude of their cross product, we can follow these steps: ### Step 1: Write down the given information We have: - \( |\vec{a}| = 6 \) - \( |\vec{b}| = 4 \) - \( |\vec{a} \times \vec{b}| = 12 \) ### Step 2: Use the formula for the magnitude of the cross product The magnitude of the cross product of two vectors can be expressed as: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] where \( \theta \) is the angle between the two vectors. ### Step 3: Substitute the known values into the equation Substituting the values we have: \[ 12 = 6 \cdot 4 \cdot \sin \theta \] ### Step 4: Simplify the equation This simplifies to: \[ 12 = 24 \sin \theta \] Now, divide both sides by 24: \[ \sin \theta = \frac{12}{24} = \frac{1}{2} \] ### Step 5: Find the angle \( \theta \) The angle \( \theta \) for which \( \sin \theta = \frac{1}{2} \) is: \[ \theta = 30^\circ \] ### Step 6: Use the formula for the dot product The dot product of two vectors can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] ### Step 7: Calculate \( \cos \theta \) We know: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] ### Step 8: Substitute the values into the dot product formula Now substituting the values into the dot product formula: \[ \vec{a} \cdot \vec{b} = 6 \cdot 4 \cdot \cos 30^\circ \] \[ \vec{a} \cdot \vec{b} = 6 \cdot 4 \cdot \frac{\sqrt{3}}{2} \] ### Step 9: Simplify the expression Calculating this gives: \[ \vec{a} \cdot \vec{b} = 24 \cdot \frac{\sqrt{3}}{2} = 12\sqrt{3} \] ### Final Answer Thus, the dot product \( \vec{a} \cdot \vec{b} \) is: \[ \vec{a} \cdot \vec{b} = 12\sqrt{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

Find the angle between vec(a) and vec(b) if |vec(a)| = 4, |vec(b)|= 2 sqrt3 and |vec(a) xx vec(b)| = 12

If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1 , then

If two vectors vec(a) and vec (b) are such that |vec(a) . vec(b) | = |vec(a) xx vec(b)|, then find the angle the vectors vec(a) and vec (b)

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) | =4 then |vec(b) | is equal to

If |vec(a) xx vec(b)|^(2) + |vec(a) .vec(b)|^(2) = 400 and |vec(a)| = 5 , then write the value of |vec(b)| .

If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12 , then | vec(a) xx vec(b) | is equal to

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

Find | vec a- vec b|,\ if:| vec a|=3,\ | vec b|=4\ a n d\ vec adot vec b=1

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.