Home
Class 12
MATHS
Prove the inequality (vec(a) * vec(b) )^...

Prove the inequality `(vec(a) * vec(b) )^(2) le |vec(a)|^(2)|vec(b)|^(2)`

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C (In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed.) |5 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - A |19 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos

Similar Questions

Explore conceptually related problems

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | vec(a).vec(b)|^(2)- |vec(a) xx vec(b)|^(2)

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)| =1, |vec(b)|=2 , then t ((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2) is equal to

For any two vectors vec a and vec b , prove that (vec a xx vec b )^2= |vec a |^2 |vec b|^2 -(vec a. vec b)^2

Prove that ( veca+ vec b).( vec a+ vecb)= | veca|^2+| vec b|^2 , if and only if vec a ,vec b are perpendicular, given vec a!= vec0, vec b!= vec0

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If | vec a|=a and | vec b|=b , prove that ( vec a/(a^2)- vec b/(b^2))^2 = (( vec a- vec b)/(a b))^2 .