Home
Class 12
MATHS
If P((A)/(B)) = 0.75, P((B)/(A)) = 0.6, ...

If `P((A)/(B)) = 0.75, P((B)/(A)) = 0.6, P(A)= 0.4`, evaluate P(B). a) 0.26 b) `(1)/(3)` c) `(2)/(5)` d) 0.32

A

0.26

B

`(1)/(3)`

C

`(2)/(5)`

D

0.32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P(B) \) given the following probabilities: 1. \( P(A|B) = 0.75 \) 2. \( P(B|A) = 0.6 \) 3. \( P(A) = 0.4 \) We can use the definitions of conditional probability to find \( P(B) \). ### Step 1: Find \( P(A \cap B) \) We know that: \[ P(B|A) = \frac{P(A \cap B)}{P(A)} \] Substituting the known values: \[ 0.6 = \frac{P(A \cap B)}{0.4} \] Now, we can solve for \( P(A \cap B) \): \[ P(A \cap B) = 0.6 \times 0.4 = 0.24 \] ### Step 2: Use \( P(A|B) \) to find \( P(B) \) Next, we use the definition of \( P(A|B) \): \[ P(A|B) = \frac{P(A \cap B)}{P(B)} \] Substituting the known values: \[ 0.75 = \frac{0.24}{P(B)} \] Now, we can solve for \( P(B) \): \[ P(B) = \frac{0.24}{0.75} \] ### Step 3: Simplify \( P(B) \) To simplify \( P(B) \): \[ P(B) = \frac{0.24}{0.75} = \frac{24}{75} \] Now, we can simplify \( \frac{24}{75} \): \[ P(B) = \frac{24 \div 3}{75 \div 3} = \frac{8}{25} \] ### Step 4: Convert to Decimal To convert \( \frac{8}{25} \) to decimal: \[ P(B) = 0.32 \] ### Final Answer Thus, the probability \( P(B) \) is: \[ \boxed{0.32} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

If P(A)=0.4,P(B)=0.8 and P(B/A)=0.6, then P(AcupB) is equal to

If P(A)=0.4 , P(B)=0.6 and P(A∩B)=0.15, then the value of P(A∣A ′∪B ′ ) is

If P(A)=0. 3 ,\ P(B)=0. 6 ,\ P(B//A)=0. 5 , find P(AuuB) .

If P(A)=0. 4 ,\ P(B)=0. 8 ,\ P(B//A)=0. 6 . Find P(A//B) and P(AuuB)

Compute P(A|B) . if P(B) = 0. 5 and P(AnnB)= 0. 32

If P(A)=0.3, P(B)=0.6 and P(A//B)=0.4 then find: (i) P(AnnB) (ii) P(B//A)

If P(A)=0. 4 ,P(B)=0. 3 and P(B/A)=0. 5 , find P(AnnB) and P(A/B)dot

If P(not A) = 0.7, P(B) = 0.7 and P((B)/(A)) = 0. 5 then find P ((A)/(B)) and P (A cup B)

If P (A) = 0. 8 , P(B) = 0. 5 and P(B|A) = 0. 4 , find (i) P(AnnB) (ii) P(A|B) (iii) P(AuuB)

If P (A) = 0. 8 , P(B) = 0. 5 and P(B|A) = 0. 4 , find (i) P(AnnB) (ii) P(A|B) (iii) P(AuuB)