Home
Class 12
MATHS
If f'(x)=x e^(x) and f(0)=1 then find f...

If `f'(x)=x e^(x)` and `f(0)=1` then find f(x).

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( f'(x) = x e^x \) and \( f(0) = 1 \), we will follow these steps: ### Step 1: Integrate \( f'(x) \) We start by integrating \( f'(x) \) to find \( f(x) \): \[ f(x) = \int f'(x) \, dx = \int x e^x \, dx \] ### Step 2: Use Integration by Parts To integrate \( x e^x \), we use integration by parts, where we let: - \( u = x \) (thus \( du = dx \)) - \( dv = e^x dx \) (thus \( v = e^x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int x e^x \, dx = x e^x - \int e^x \, dx \] ### Step 3: Integrate \( e^x \) Now we integrate \( e^x \): \[ \int e^x \, dx = e^x \] So, substituting back, we get: \[ \int x e^x \, dx = x e^x - e^x + C \] ### Step 4: Write \( f(x) \) Thus, we can express \( f(x) \): \[ f(x) = x e^x - e^x + C \] ### Step 5: Use the Initial Condition Now we use the initial condition \( f(0) = 1 \) to find \( C \): \[ f(0) = 0 \cdot e^0 - e^0 + C = 1 \] This simplifies to: \[ 0 - 1 + C = 1 \] \[ C - 1 = 1 \implies C = 2 \] ### Step 6: Final Expression for \( f(x) \) Substituting \( C \) back into the expression for \( f(x) \): \[ f(x) = x e^x - e^x + 2 \] ### Conclusion The function \( f(x) \) is: \[ f(x) = x e^x - e^x + 2 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=e^(1-x) then f(x) is

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

If f(x)=x.e^(x(1-x), then f(x) is

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

f(x)=e^x-e^(-x) then find f'(x)

If f(x)=e^xsinx then find f ' (x )

If lim_(trarrx)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

If lim_(trarrx) (e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).