Home
Class 12
MATHS
If f(x)= log("tan"(x)/(2)), then prove t...

If `f(x)= log("tan"(x)/(2))`, then prove that, `f'(x)="cosec"x`.,

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

If f.(x)= log((1+x)/(1-x)) , then

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

If f(x)=(1-x^(2))/(1+x^(2)) , then prove that: f(tan theta)=cos 2theta

If f (x) = cot x, then prove that : f(-x)=-f(x)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

If (x)=tan x , the prove that :f(x)+f(-x)=0