Home
Class 12
MATHS
Prove that : (1)/(2) cos^(-1) ((1+ 2 cos...

Prove that : `(1)/(2) cos^(-1) ((1+ 2 cos x)/( 2+cosx) ) = tan^(-1) ((1)/(sqrt(3)) "tan" (x)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \[ \frac{1}{2} \cos^{-1} \left( \frac{1 + 2 \cos x}{2 + \cos x} \right) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \tan \left( \frac{x}{2} \right) \right), \] we will start with the left-hand side (LHS) and manipulate it to reach the right-hand side (RHS). ### Step 1: Rewrite the LHS We start with the left-hand side: \[ \text{LHS} = \frac{1}{2} \cos^{-1} \left( \frac{1 + 2 \cos x}{2 + \cos x} \right). \] ### Step 2: Use the identity for \(\cos^{-1}\) We know that: \[ \cos^{-1}(x) = 2 \tan^{-1} \left( \frac{\sqrt{1 - x^2}}{1 + x} \right). \] Let \( x = \frac{1 + 2 \cos x}{2 + \cos x} \). Thus, we can write: \[ \cos^{-1} \left( \frac{1 + 2 \cos x}{2 + \cos x} \right) = 2 \tan^{-1} \left( \frac{\sqrt{1 - \left( \frac{1 + 2 \cos x}{2 + \cos x} \right)^2}}{1 + \frac{1 + 2 \cos x}{2 + \cos x}} \right). \] ### Step 3: Simplify the expression Now, we need to simplify \( \sqrt{1 - \left( \frac{1 + 2 \cos x}{2 + \cos x} \right)^2} \) and \( 1 + \frac{1 + 2 \cos x}{2 + \cos x} \). Calculating \( \left( \frac{1 + 2 \cos x}{2 + \cos x} \right)^2 \): \[ \left( \frac{1 + 2 \cos x}{2 + \cos x} \right)^2 = \frac{(1 + 2 \cos x)^2}{(2 + \cos x)^2}. \] ### Step 4: Calculate \( 1 - x^2 \) Now we calculate \( 1 - x^2 \): \[ 1 - \left( \frac{1 + 2 \cos x}{2 + \cos x} \right)^2 = \frac{(2 + \cos x)^2 - (1 + 2 \cos x)^2}{(2 + \cos x)^2}. \] Expanding both squares: \[ (2 + \cos x)^2 = 4 + 4 \cos x + \cos^2 x, \] \[ (1 + 2 \cos x)^2 = 1 + 4 \cos x + 4 \cos^2 x. \] Subtracting these: \[ (2 + \cos x)^2 - (1 + 2 \cos x)^2 = (4 + 4 \cos x + \cos^2 x) - (1 + 4 \cos x + 4 \cos^2 x) = 3 - 3 \cos^2 x = 3(1 - \cos^2 x) = 3 \sin^2 x. \] Thus, \[ \sqrt{1 - x^2} = \sqrt{\frac{3 \sin^2 x}{(2 + \cos x)^2}} = \frac{\sqrt{3} \sin x}{2 + \cos x}. \] ### Step 5: Substitute back into the expression Now substituting back into our expression for \(\tan^{-1}\): \[ \tan^{-1} \left( \frac{\sqrt{3} \sin x}{2 + \cos x} \cdot \frac{1}{1 + \frac{1 + 2 \cos x}{2 + \cos x}} \right). \] The denominator simplifies to: \[ 1 + \frac{1 + 2 \cos x}{2 + \cos x} = \frac{(2 + \cos x) + (1 + 2 \cos x)}{2 + \cos x} = \frac{3 + 3 \cos x}{2 + \cos x} = \frac{3(1 + \cos x)}{2 + \cos x}. \] ### Step 6: Final simplification Thus, we have: \[ \text{LHS} = \tan^{-1} \left( \frac{\sqrt{3} \sin x}{2 + \cos x} \cdot \frac{2 + \cos x}{3(1 + \cos x)} \right) = \tan^{-1} \left( \frac{\sqrt{3} \sin x}{3(1 + \cos x)} \right). \] Using the double angle identity for sine, \( \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} \) and \( 1 + \cos x = 2 \cos^2 \frac{x}{2} \): \[ \text{LHS} = \tan^{-1} \left( \frac{\sqrt{3} \cdot 2 \sin \frac{x}{2} \cos \frac{x}{2}}{3 \cdot 2 \cos^2 \frac{x}{2}} \right) = \tan^{-1} \left( \frac{\sqrt{3}}{3} \tan \frac{x}{2} \right). \] Since \( \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}} \), we have: \[ \text{LHS} = \tan^{-1} \left( \frac{1}{\sqrt{3}} \tan \frac{x}{2} \right). \] ### Conclusion Thus, we have shown that: \[ \frac{1}{2} \cos^{-1} \left( \frac{1 + 2 \cos x}{2 + \cos x} \right) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \tan \left( \frac{x}{2} \right) \right), \] which proves the statement.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

Prove that tan ^(-1) ""(1)/(4) + tan ^(-1) ""(2)/(9) = cos ^(-1) ((2)/(sqrt5))

(v) tan^(-1)sqrt((1+cos x)/(1-cos x))

Prove that 1/2 cos^(-1) ((1-x)/(1+x))=tan^(-1) sqrtx .

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Prove that : (cos ^(2) A + tan ^(2) A - 1 )/( sin ^(2) A ) = tan ^(2) A .

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]