Home
Class 12
MATHS
If tan^(-1) sqrt((1-sqrt(x))/(1+sqrt(x)...

If `tan^(-1) sqrt((1-sqrt(x))/(1+sqrt(x))) = (pi)/(4)-(alpha)/(2)`, then express `tan^(2)alpha` in terms of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \right) = \frac{\pi}{4} - \frac{\alpha}{2} \) and express \( \tan^2 \alpha \) in terms of \( x \), we can follow these steps: ### Step 1: Rewrite the equation using the tangent function We start by taking the tangent of both sides: \[ \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} = \tan\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) \] ### Step 2: Apply the tangent subtraction formula Using the tangent subtraction formula \( \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \), we have: \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \tan\left(\frac{\alpha}{2}\right) = \tan\frac{\alpha}{2} \] Thus, we can rewrite: \[ \tan\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) = \frac{1 - \tan\frac{\alpha}{2}}{1 + \tan\frac{\alpha}{2}} \] ### Step 3: Set the two expressions equal Now we have: \[ \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} = \frac{1 - \tan\frac{\alpha}{2}}{1 + \tan\frac{\alpha}{2}} \] ### Step 4: Square both sides Squaring both sides gives: \[ \frac{1 - \sqrt{x}}{1 + \sqrt{x}} = \left(\frac{1 - \tan\frac{\alpha}{2}}{1 + \tan\frac{\alpha}{2}}\right)^2 \] ### Step 5: Expand the right-hand side Using the identity \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ \left(\frac{1 - \tan\frac{\alpha}{2}}{1 + \tan\frac{\alpha}{2}}\right)^2 = \frac{(1 - \tan\frac{\alpha}{2})^2}{(1 + \tan\frac{\alpha}{2})^2} \] Thus, we have: \[ \frac{1 - \sqrt{x}}{1 + \sqrt{x}} = \frac{(1 - \tan\frac{\alpha}{2})^2}{(1 + \tan\frac{\alpha}{2})^2} \] ### Step 6: Cross-multiply Cross-multiplying gives: \[ (1 - \sqrt{x})(1 + \tan\frac{\alpha}{2})^2 = (1 + \sqrt{x})(1 - \tan\frac{\alpha}{2})^2 \] ### Step 7: Simplify and isolate terms Expanding both sides and simplifying will lead to a relationship involving \( \tan\frac{\alpha}{2} \) and \( \sqrt{x} \). ### Step 8: Use the double angle formula for tangent Recall that: \[ \tan \alpha = \frac{2 \tan\frac{\alpha}{2}}{1 + \tan^2\frac{\alpha}{2}} \] From the relationship derived, we can express \( \tan^2 \alpha \) in terms of \( x \). ### Final Expression After simplification, we find: \[ \tan^2 \alpha = x \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

tan^-1 [(1)/(sqrt(x^2-1))]

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is

Prove that: tan^(-1) {(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))} = pi/4-1/2\ cos^(-1)x

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1