Home
Class 12
MATHS
If A=((-1, 2, 0), (-1, 1, 1), (0, 1, 0)...

If `A=((-1, 2, 0), (-1, 1, 1), (0, 1, 0))`, find `A^(-1)`. Use it to solve the system of equations:
`-x+2y=2, -x+y +z=1, y+2=0`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

If A=[1 2 0 -2 -1 -2 0 -1 1] , find A^(-1) . Using A^(-1) , solve the system of linear equations: x-2y=10 ,\ \ 2x+y+3z=8,\ \ -2y+z=7

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

Determine the product [(-4, 4, 4),(-7, 1, 3),( 5,-3,-1)][(1,-1, 1),( 1,-2,-2),( 2, 1, 3)] and use it to solve the system of equations: x-y+z=4,\ \ x-2y-2z=9,\ \ 2x+y+3z=1.

If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of linear equation. x+2y+z=4,-x+y+z=0,x-3y+z=2

A=[3-4 2 2 3 5 1 0 1] , find A^(-1) and hence solve the following system of equations: 3x-4y+2z=-1,\ \ 2x+3y+5z=7,\ \ x+z=2

If A = ({:(1,-1,1),(2,-1,0),(1,0,0):}) find A^(3) , Hence find A^(-1) Use it to solve the following system of linear equation x-y +z=1 ,2x -y=0 , x-4 =0

If A\|(1,2,0),(-2,-1,-2),(0,-1,1)| , then find the value of A^(-1) Using A^(-1) , solve the system of linear equations x-2y=10, 2xy-z=8 and -2y+z=7

If A=[[1,-1, 1],[ 2, 1,-3],[ 1,1,1]] find A^(-1) and hence solve the system of linear equation. x+2y+z=4,-x+y+z=0,x-3y+z=2

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1