Home
Class 12
MATHS
If y=sin (sinx) prove that (d^(2)y)/(dx...

If `y=sin (sinx) ` prove that `(d^(2)y)/(dx^(2)) + "tan x" (dy)/(dx) + y cos^(2) x =0`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0 .

If y="sin"(sinx),"prove that" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y=cos (sin x) , show that (d^2y)/(dx^2)+tan x""(dy)/(dx)+y cos^2 x=0

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

If y=x^(x) , prove that: (d^(2)y)/(dx^(2))-1/y((dy)/(dx))^(2) - y/x=0

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y = 5 cos x-3 s in x , prove that (d^2y)/(dx^2)+y=0

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=acos(logx)+bsin(logx), prove that x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0