Home
Class 12
MATHS
Evaluate: int(0)^((pi)/(2)) log (sin x) ...

Evaluate: `int_(0)^((pi)/(2)) log (sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx \), we can use the property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx \] ### Step 2: Use the Property of Definite Integrals Using the property of integrals, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\sin(\frac{\pi}{2} - x)) \, dx \] Since \( \sin(\frac{\pi}{2} - x) = \cos x \), we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx \] ### Step 3: Combine the Two Integrals Now we can add both expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx + \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx \] This can be combined using the logarithm property: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \log(\sin x) + \log(\cos x) \right) \, dx = \int_{0}^{\frac{\pi}{2}} \log(\sin x \cos x) \, dx \] ### Step 4: Simplify the Logarithm Using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \), we can rewrite the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2} \sin(2x)\right) \, dx \] This can be separated as: \[ 2I = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right) \, dx + \int_{0}^{\frac{\pi}{2}} \log(\sin(2x)) \, dx \] ### Step 5: Evaluate the First Integral The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right) \, dx = \log\left(\frac{1}{2}\right) \cdot \frac{\pi}{2} = -\frac{\pi}{2} \log(2) \] ### Step 6: Change of Variable for the Second Integral For the second integral, we make the substitution \( u = 2x \) which gives \( du = 2dx \) or \( dx = \frac{du}{2} \). The limits change from \( 0 \) to \( \pi \): \[ \int_{0}^{\frac{\pi}{2}} \log(\sin(2x)) \, dx = \frac{1}{2} \int_{0}^{\pi} \log(\sin u) \, du \] Since \( \int_{0}^{\pi} \log(\sin u) \, du = 2 \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = 2I \), we have: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin(2x)) \, dx = \frac{1}{2} \cdot 2I = I \] ### Step 7: Combine Everything Now substituting back into the equation for \( 2I \): \[ 2I = -\frac{\pi}{2} \log(2) + I \] Rearranging gives: \[ 2I - I = -\frac{\pi}{2} \log(2) \implies I = -\frac{\pi}{2} \log(2) \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = -\frac{\pi}{2} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-B |10 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^((pi)/(2)) log (cot x)dx .

Evaluate: int_(0)^(pi) xlog (sin x) dx

Evaluate : int_(0)^(pi/2)log(tanx)dx

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Evaluate int_0^(pi/2) log sin xdx

int_(0)^(pi) x log sinx\ dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

int_(0)^(pi) cos 2x . Log (sinx) dx