Home
Class 12
MATHS
Evaluate : |{:(1, cosec ^(2) theta, cot...

Evaluate : ` |{:(1, cosec ^(2) theta, cot ^(2) theta),(-1 , cot ^(2) theta, cosec ^(2) theta),(2,(9)/(2), (5)/(2) ):}|` a) -1 b) 1 c) 0 d) None of these

A

`-1`

B

1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} 1 & \csc^2 \theta & \cot^2 \theta \\ -1 & \cot^2 \theta & \csc^2 \theta \\ 2 & \frac{9}{2} & \frac{5}{2} \end{vmatrix} \] we will use the method of cofactor expansion along the first column. ### Step 1: Expand the determinant using the first column Using the first column, we have: \[ D = 1 \cdot \begin{vmatrix} \cot^2 \theta & \csc^2 \theta \\ \frac{9}{2} & \frac{5}{2} \end{vmatrix} - (-1) \cdot \begin{vmatrix} \csc^2 \theta & \cot^2 \theta \\ \frac{9}{2} & \frac{5}{2} \end{vmatrix} + 2 \cdot \begin{vmatrix} \csc^2 \theta & \cot^2 \theta \\ \cot^2 \theta & \csc^2 \theta \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} \cot^2 \theta & \csc^2 \theta \\ \frac{9}{2} & \frac{5}{2} \end{vmatrix} = \cot^2 \theta \cdot \frac{5}{2} - \csc^2 \theta \cdot \frac{9}{2} = \frac{5}{2} \cot^2 \theta - \frac{9}{2} \csc^2 \theta \] 2. For the second determinant: \[ \begin{vmatrix} \csc^2 \theta & \cot^2 \theta \\ \frac{9}{2} & \frac{5}{2} \end{vmatrix} = \csc^2 \theta \cdot \frac{5}{2} - \cot^2 \theta \cdot \frac{9}{2} = \frac{5}{2} \csc^2 \theta - \frac{9}{2} \cot^2 \theta \] 3. For the third determinant: \[ \begin{vmatrix} \csc^2 \theta & \cot^2 \theta \\ \cot^2 \theta & \csc^2 \theta \end{vmatrix} = \csc^4 \theta - \cot^4 \theta \] ### Step 3: Substitute back into the determinant expression Now substituting these back into our expression for \(D\): \[ D = 1 \cdot \left( \frac{5}{2} \cot^2 \theta - \frac{9}{2} \csc^2 \theta \right) + \left( \frac{5}{2} \csc^2 \theta - \frac{9}{2} \cot^2 \theta \right) + 2 \cdot \left( \csc^4 \theta - \cot^4 \theta \right) \] ### Step 4: Combine like terms Combining all the terms: \[ D = \left( \frac{5}{2} \cot^2 \theta - \frac{9}{2} \csc^2 \theta + \frac{5}{2} \csc^2 \theta - \frac{9}{2} \cot^2 \theta + 2(\csc^4 \theta - \cot^4 \theta) \right) \] ### Step 5: Simplify the expression This simplifies to: \[ D = \left( \frac{5}{2} - \frac{9}{2} \right) \cot^2 \theta + \left( \frac{5}{2} - \frac{9}{2} \right) \csc^2 \theta + 2(\csc^4 \theta - \cot^4 \theta) \] \[ D = -2 \cot^2 \theta - 2 \csc^2 \theta + 2(\csc^4 \theta - \cot^4 \theta) \] ### Step 6: Factor out common terms Factoring out the common term: \[ D = 2 \left( \csc^4 \theta - \cot^4 \theta - \cot^2 \theta - \csc^2 \theta \right) \] ### Step 7: Use the identity \(\csc^2 \theta - \cot^2 \theta = 1\) Using the identity \(\csc^2 \theta - \cot^2 \theta = 1\): \[ D = 2 \left( (\csc^2 \theta - \cot^2 \theta)(\csc^2 \theta + \cot^2 \theta) - \cot^2 \theta - \csc^2 \theta \right) \] \[ D = 2 \left( 1 \cdot (\csc^2 \theta + \cot^2 \theta) - \cot^2 \theta - \csc^2 \theta \right) \] \[ D = 2 \left( 0 \right) = 0 \] ### Final Answer Thus, the value of the determinant is \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+cot^(2) theta = cosec^(2) theta

Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

Find the general value of theta 2 cot ^(2) theta = cosec ^(2) theta

Prove that cos^(2)theta("cosec"^(2)theta-cot^(2)theta)=cos^(2)theta .

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta

(b) cosec theta=1+cot theta

(b) cosec theta=1+cot theta