Home
Class 12
MATHS
A matrix A = ({:(2,3),(5,-2):}) is suc...

A matrix ` A = ({:(2,3),(5,-2):}) ` is such that `A^(-1)= lambda A ` then what is the value of `lambda ` .

A

19

B

9

C

` (1)/(19)`

D

`-(1)/(19)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that \( A^{-1} = \lambda A \) for the given matrix \( A = \begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix} \). ### Step 1: Find the determinant of matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ \text{det}(A) = (2)(-2) - (3)(5) = -4 - 15 = -19 \] ### Step 2: Find the adjoint of matrix \( A \) The adjoint of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} -2 & -3 \\ -5 & 2 \end{pmatrix} \] ### Step 3: Calculate the inverse of matrix \( A \) The inverse of a matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Substituting the values we found: \[ A^{-1} = \frac{1}{-19} \begin{pmatrix} -2 & -3 \\ -5 & 2 \end{pmatrix} = \begin{pmatrix} \frac{2}{19} & \frac{3}{19} \\ \frac{5}{19} & -\frac{2}{19} \end{pmatrix} \] ### Step 4: Set up the equation \( A^{-1} = \lambda A \) We know that: \[ A^{-1} = \lambda A \] Substituting the values we have: \[ \begin{pmatrix} \frac{2}{19} & \frac{3}{19} \\ \frac{5}{19} & -\frac{2}{19} \end{pmatrix} = \lambda \begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix} \] ### Step 5: Equate the corresponding elements From the equation above, we can equate the corresponding elements: 1. \( \frac{2}{19} = 2\lambda \) 2. \( \frac{3}{19} = 3\lambda \) 3. \( \frac{5}{19} = 5\lambda \) 4. \( -\frac{2}{19} = -2\lambda \) From the first equation: \[ \lambda = \frac{2}{19 \cdot 2} = \frac{1}{19} \] ### Conclusion Thus, the value of \( \lambda \) is: \[ \lambda = \frac{1}{19} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

If sin2A=lambdasin2B , then write the value of (lambda+1)/(lambda-1) .

(3+omega + 3 omega^(2))^(4)= lambda omega , then value of lambda is :

If x - lambda is a factor of x^(4)-lambda x^(3)+2x+6 . Then the value of lambda is

if mu_21 is 1.5, then find the value of lambda_1/lambda_2.

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to

If A is a square matrix of order nxxn such that |A|=lambda , then write the value of |-A| .

Find the equation of line passing through the points P(-1,3,2) and Q(-4,2-2) . Also, if the point R(5,5,lambda) is collinear with the points P and Q, then find the value of lambda .

int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

If the points A(-1,3,2),B(-4,2,-2)a n dC(5,5,lambda) are collinear, find the value of lambda .

Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the value of lambda is equal to