Home
Class 12
MATHS
Solve sin (cos ^(-1) x) = (1)/(9)...

Solve sin ` (cos ^(-1) x) = (1)/(9)`

A

`(4sqrt5)/( 9)`

B

` ( 2sqrt5)/( 9)`

C

` ( 4sqrt3)/(5)`

D

` (2sqrt3)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\cos^{-1} x) = \frac{1}{9} \), we will follow these steps: ### Step 1: Set up the equation Let \( \alpha = \cos^{-1} x \). Therefore, we can rewrite the equation as: \[ \sin(\alpha) = \frac{1}{9} \] ### Step 2: Relate sine and cosine From the definition of cosine, we know: \[ \cos(\alpha) = x \] We can visualize this using a right triangle where: - The hypotenuse is 1 (the length of the hypotenuse in a unit circle), - The base (adjacent side) is \( x \), - The opposite side (perpendicular) can be determined using the Pythagorean theorem. ### Step 3: Use the Pythagorean theorem Using the Pythagorean theorem: \[ \text{opposite}^2 + \text{adjacent}^2 = \text{hypotenuse}^2 \] We have: \[ \text{opposite}^2 + x^2 = 1^2 \] Thus, \[ \text{opposite}^2 = 1 - x^2 \] Taking the square root gives us: \[ \text{opposite} = \sqrt{1 - x^2} \] ### Step 4: Substitute into the sine equation Now substituting back into the sine function, we have: \[ \sin(\alpha) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{1 - x^2}}{1} = \sqrt{1 - x^2} \] Setting this equal to \( \frac{1}{9} \): \[ \sqrt{1 - x^2} = \frac{1}{9} \] ### Step 5: Square both sides To eliminate the square root, we square both sides: \[ 1 - x^2 = \left(\frac{1}{9}\right)^2 \] This simplifies to: \[ 1 - x^2 = \frac{1}{81} \] ### Step 6: Solve for \( x^2 \) Rearranging gives: \[ x^2 = 1 - \frac{1}{81} \] Finding a common denominator (81): \[ x^2 = \frac{81}{81} - \frac{1}{81} = \frac{80}{81} \] ### Step 7: Take the square root Taking the square root of both sides, we find: \[ x = \sqrt{\frac{80}{81}} = \frac{\sqrt{80}}{9} \] We can simplify \( \sqrt{80} \): \[ \sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5} \] Thus, \[ x = \frac{4\sqrt{5}}{9} \] ### Final Answer The solution to the equation \( \sin(\cos^{-1} x) = \frac{1}{9} \) is: \[ x = \frac{4\sqrt{5}}{9} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2) .

Solve : "sin"(sin^(-1)x)=1/2

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

solve sin^(-1) x le cos^(-1) x

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)