Home
Class 12
MATHS
Evaluate : int (-5)^(5) ( x^(17) +sin...

Evaluate : ` int _(-5)^(5) ( x^(17) +sin ^(195)x) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-5}^{5} \left( x^{17} + \sin^{195}(x) \right) \, dx, \] we can follow these steps: ### Step 1: Define the function Let \[ f(x) = x^{17} + \sin^{195}(x). \] ### Step 2: Check the property of the function Next, we will check the property of \( f(x) \) by evaluating \( f(-x) \): \[ f(-x) = (-x)^{17} + \sin^{195}(-x). \] ### Step 3: Simplify \( f(-x) \) Since \( (-x)^{17} = -x^{17} \) (because 17 is an odd number) and \( \sin(-x) = -\sin(x) \), we have: \[ \sin^{195}(-x) = (-\sin(x))^{195} = -\sin^{195}(x) \quad \text{(since 195 is also odd)}. \] Thus, \[ f(-x) = -x^{17} - \sin^{195}(x) = -\left( x^{17} + \sin^{195}(x) \right) = -f(x). \] ### Step 4: Conclude the symmetry Since \( f(-x) = -f(x) \), this means that \( f(x) \) is an odd function. ### Step 5: Apply the property of definite integrals We can use the property of definite integrals for odd functions: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd.} \] ### Step 6: Evaluate the integral Therefore, we conclude that: \[ I = \int_{-5}^{5} f(x) \, dx = 0. \] ### Final Answer Thus, the value of the integral is \[ \int_{-5}^{5} \left( x^{17} + \sin^{195}(x) \right) \, dx = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int (x-3)(5-x) dx

Evaluate: int _(4) ^(5) | x-5| dx

Evaluate : int_(4)^(5)|x-5|dx

Evaluate : int_(4)^(5)|x-5|dx

Evaluate: int (x + 5)^2dx

Evaluate: int (x - 1)(x + 5) dx

Evaluate: int_3^5(2-x)dx

Evaluate int\x.(x-5)\dx

Evaluate int 5x-2\dx

Evaluate: int(5x+3)\ dx