Home
Class 12
MATHS
If xy =1 +a^(2) , show that tan ^(-1)...

If `xy =1 +a^(2) , ` show that ` tan ^(-1) ""(1)/(a+x) +tan^-1"" 1/(a+y) = tan ^(-1) ""(1)/(a) , ( x+ y + 2a) ne 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that: \[ \tan^{-1}\left(\frac{1}{a+x}\right) + \tan^{-1}\left(\frac{1}{a+y}\right) = \tan^{-1}\left(\frac{1}{a}\right) \] given that \(xy = 1 + a^2\). ### Step 1: Write down the left-hand side (LHS) We start with the left-hand side: \[ LHS = \tan^{-1}\left(\frac{1}{a+x}\right) + \tan^{-1}\left(\frac{1}{a+y}\right) \] ### Step 2: Use the formula for the sum of arctangents Using the formula for the sum of two arctangents: \[ \tan^{-1}(u) + \tan^{-1}(v) = \tan^{-1}\left(\frac{u + v}{1 - uv}\right) \] where \(u = \frac{1}{a+x}\) and \(v = \frac{1}{a+y}\), we can rewrite the LHS: \[ LHS = \tan^{-1}\left(\frac{\frac{1}{a+x} + \frac{1}{a+y}}{1 - \frac{1}{(a+x)(a+y)}}\right) \] ### Step 3: Simplify the numerator Now, let's simplify the numerator: \[ \frac{1}{a+x} + \frac{1}{a+y} = \frac{(a+y) + (a+x)}{(a+x)(a+y)} = \frac{2a + x + y}{(a+x)(a+y)} \] ### Step 4: Simplify the denominator Now, simplify the denominator: \[ 1 - \frac{1}{(a+x)(a+y)} = \frac{(a+x)(a+y) - 1}{(a+x)(a+y)} = \frac{(a^2 + ax + ay + xy - 1)}{(a+x)(a+y)} \] ### Step 5: Substitute \(xy\) From the given condition \(xy = 1 + a^2\), we substitute this into the denominator: \[ a^2 + ax + ay + (1 + a^2) - 1 = 2a^2 + ax + ay \] Thus, the denominator becomes: \[ \frac{2a^2 + ax + ay}{(a+x)(a+y)} \] ### Step 6: Combine the results Now, substituting back into the LHS: \[ LHS = \tan^{-1}\left(\frac{2a + x + y}{2a^2 + ax + ay}\right) \] ### Step 7: Factor out \(a\) from the denominator We can factor out \(a\) from the denominator: \[ LHS = \tan^{-1}\left(\frac{2a + x + y}{a(2a + x + y)}\right) \] ### Step 8: Simplify the expression This simplifies to: \[ LHS = \tan^{-1}\left(\frac{1}{a}\right) \] ### Conclusion Thus, we have shown that: \[ \tan^{-1}\left(\frac{1}{a+x}\right) + \tan^{-1}\left(\frac{1}{a+y}\right) = \tan^{-1}\left(\frac{1}{a}\right) \] Hence, we conclude that: \[ \text{LHS} = \text{RHS} \] ### Final Statement Therefore, the statement is proved. ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x