Home
Class 12
MATHS
Evaluate: int ( (6x+ 5))/( sqrt(6+ x-2...

Evaluate: ` int ( (6x+ 5))/( sqrt(6+ x-2x^(2)))dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{6x + 5}{\sqrt{6 + x - 2x^2}} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the integral We start with the integral as given: \[ \int \frac{6x + 5}{\sqrt{6 + x - 2x^2}} \, dx. \] ### Step 2: Simplify the denominator We can rewrite the expression inside the square root: \[ 6 + x - 2x^2 = -2(x^2 - \frac{1}{2}x - 3). \] ### Step 3: Factor the quadratic Next, we can complete the square for the quadratic: \[ x^2 - \frac{1}{2}x - 3 = \left(x - \frac{1}{4}\right)^2 - \frac{1}{16} - 3 = \left(x - \frac{1}{4}\right)^2 - \frac{49}{16}. \] Thus, we have: \[ 6 + x - 2x^2 = -2\left(\left(x - \frac{1}{4}\right)^2 - \frac{49}{16}\right). \] ### Step 4: Substitute Let \( t = \sqrt{6 + x - 2x^2} \). Then, we differentiate: \[ dt = \frac{1}{2\sqrt{6 + x - 2x^2}}(1 - 4x) \, dx. \] ### Step 5: Rewrite the numerator Now, we need to express \( 6x + 5 \) in terms of \( 1 - 4x \): \[ 6x + 5 = -4x + (4x + 5). \] ### Step 6: Split the integral Now we can split the integral: \[ \int \frac{6x + 5}{\sqrt{6 + x - 2x^2}} \, dx = \int \frac{-4x}{\sqrt{6 + x - 2x^2}} \, dx + \int \frac{4x + 5}{\sqrt{6 + x - 2x^2}} \, dx. \] ### Step 7: Evaluate the first integral For the first integral, we can substitute \( dt \): \[ \int \frac{-4x}{\sqrt{6 + x - 2x^2}} \, dx = -\frac{1}{2} \int dt. \] ### Step 8: Evaluate the second integral The second integral requires a more complex approach, possibly involving trigonometric substitution or further simplification. ### Step 9: Combine results After evaluating both integrals, we combine the results and include a constant of integration \( C \). ### Final Result The final result of the integral will be expressed in terms of \( t \) and will include constants derived from the integration process.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int (dx )/( sqrt (5x - 4x ^(2)))

Evaluate int(5^(x))/(sqrt(5^(-2x)-5^(2x)))dx=

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: (i) int(e^x)/(sqrt(4-e^(2x)))\ dx (ii) int(x^2)/(sqrt(1-x^6))\ dx

Evaluate: int(x-5)\ sqrt(x^2+x)\ dx

Evaluate: int(x-5)\ sqrt(x^2+x)\ dx

Evaluate: int(x-5)\ sqrt(x^2+x)\ dx

Evaluate: (i) int(a^x)/(sqrt(1-a^(2x)))\ dx (ii) int(2x)/(sqrt(1-x^2-x^4))\ dx

Evaluate: int(x^(5/2))/(sqrt(1+x^7))dx