Home
Class 12
MATHS
Using properties of determinant , find t...

Using properties of determinant , find the value of ` |{:( 2y +4, 5y+7, 8y+a),(3y+5,6y+8,9y+b),(4y+6, 7y+9,10y+c):}|` ,if a,b and c are in AP.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 2y + 4 & 5y + 7 & 8y + a \\ 3y + 5 & 6y + 8 & 9y + b \\ 4y + 6 & 7y + 9 & 10y + c \end{vmatrix} \] given that \( a, b, c \) are in arithmetic progression (AP), we proceed as follows: ### Step 1: Understand the condition of AP Since \( a, b, c \) are in AP, we have the relation: \[ b - a = c - b \implies 2b = a + c \implies 2b - a - c = 0 \] This will be useful later. ### Step 2: Write the determinant We can express the determinant \( D \) as: \[ D = \begin{vmatrix} 2y + 4 & 5y + 7 & 8y + a \\ 3y + 5 & 6y + 8 & 9y + b \\ 4y + 6 & 7y + 9 & 10y + c \end{vmatrix} \] ### Step 3: Simplify the determinant We can simplify the determinant by performing row operations. We will multiply the second row by 2 and divide the entire determinant by 2 to keep it equivalent: \[ D = \frac{1}{2} \begin{vmatrix} 2y + 4 & 5y + 7 & 8y + a \\ 2(3y + 5) & 2(6y + 8) & 2(9y + b) \\ 4y + 6 & 7y + 9 & 10y + c \end{vmatrix} \] This results in: \[ D = \frac{1}{2} \begin{vmatrix} 2y + 4 & 5y + 7 & 8y + a \\ 6y + 10 & 12y + 16 & 18y + 2b \\ 4y + 6 & 7y + 9 & 10y + c \end{vmatrix} \] ### Step 4: Subtract rows Now, we will perform the operation \( R_2 \leftarrow R_2 - R_1 - R_3 \): \[ D = \frac{1}{2} \begin{vmatrix} 2y + 4 & 5y + 7 & 8y + a \\ (6y + 10 - (2y + 4) - (4y + 6)) & (12y + 16 - (5y + 7) - (7y + 9)) & (18y + 2b - (8y + a) - (10y + c)) \\ 4y + 6 & 7y + 9 & 10y + c \end{vmatrix} \] ### Step 5: Simplify the second row Calculating the second row: 1. First element: \( 6y + 10 - 2y - 4 - 4y - 6 = 0 \) 2. Second element: \( 12y + 16 - 5y - 7 - 7y - 9 = 0 \) 3. Third element: \( 18y + 2b - 8y - a - 10y - c = 2b - a - c \) Thus, we have: \[ D = \frac{1}{2} \begin{vmatrix} 2y + 4 & 5y + 7 & 8y + a \\ 0 & 0 & 2b - a - c \\ 4y + 6 & 7y + 9 & 10y + c \end{vmatrix} \] ### Step 6: Evaluate the determinant Since the second row is entirely zeros except for one element, we can conclude: \[ D = 0 \quad \text{(because the determinant of a matrix with a row of zeros is zero)} \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

If a ,\ b ,\ c are in A.P., find the value of |(2y+4, 5y+7, 8y+a),(3y+5, 6y+8, 9y+b),(4y+6, 7y+9 ,10y+c)| .

If a,b,c are in A.P, find value of |[2y+4,5y+7,8y+a],[3y+5,6y+8,9y+b],[4y+6,7y+9,10y+c]|

If 2x+3y=8 and x y=2 , find the value of 4x^2+9y^2

If 3x+2y=12 and x y=6, find the value of 9x^2+4y^2

If 3x-7y=10\ and x y=-1, find the value of 9x^2+49 y^2

If 3x+2y=12 and x y=6 , find the value of 9x^2+4y^2

Evaluate : 7x - 9y + 3 -3x - 5y + 8

Find value of x and y: (5x-4y+8=0),(7x+6y-9=0)

Find value of x and y: (5x-4y+8=0),(7x+6y-9=0)