Home
Class 12
MATHS
If A = ({:(1,-1,1),(2,-1,0),(1,0,0):}) ...

If A = ` ({:(1,-1,1),(2,-1,0),(1,0,0):})` find `A^(3)` , Hence find `A^(-1)` Use it to solve the following system of linear equation` x-y +z=1 ,2x -y=0 , x-4 =0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find \( A^3 \) and then \( A^{-1} \). Finally, we will use \( A^{-1} \) to solve the system of linear equations. ### Step 1: Define the Matrix A The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - First column: \( 1 \cdot 1 + (-1) \cdot 2 + 1 \cdot 1 = 1 - 2 + 1 = 0 \) - Second column: \( 1 \cdot (-1) + (-1) \cdot (-1) + 1 \cdot 0 = -1 + 1 + 0 = 0 \) - Third column: \( 1 \cdot 1 + (-1) \cdot 0 + 1 \cdot 0 = 1 + 0 + 0 = 1 \) - Second row: - First column: \( 2 \cdot 1 + (-1) \cdot 2 + 0 \cdot 1 = 2 - 2 + 0 = 0 \) - Second column: \( 2 \cdot (-1) + (-1) \cdot (-1) + 0 \cdot 0 = -2 + 1 + 0 = -1 \) - Third column: \( 2 \cdot 1 + (-1) \cdot 0 + 0 \cdot 0 = 2 + 0 + 0 = 2 \) - Third row: - First column: \( 1 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 = 1 + 0 + 0 = 1 \) - Second column: \( 1 \cdot (-1) + 0 \cdot (-1) + 0 \cdot 0 = -1 + 0 + 0 = -1 \) - Third column: \( 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 = 1 + 0 + 0 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{pmatrix} \] ### Step 3: Calculate \( A^3 \) Now, we multiply \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \] Calculating the elements of \( A^3 \): - First row: - First column: \( 0 \cdot 1 + 0 \cdot 2 + 1 \cdot 1 = 0 + 0 + 1 = 1 \) - Second column: \( 0 \cdot (-1) + 0 \cdot (-1) + 1 \cdot 0 = 0 + 0 + 0 = 0 \) - Third column: \( 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 0 + 0 + 0 = 0 \) - Second row: - First column: \( 0 \cdot 1 + (-1) \cdot 2 + 2 \cdot 1 = 0 - 2 + 2 = 0 \) - Second column: \( 0 \cdot (-1) + (-1) \cdot (-1) + 2 \cdot 0 = 0 + 1 + 0 = 1 \) - Third column: \( 0 \cdot 1 + (-1) \cdot 0 + 2 \cdot 0 = 0 + 0 + 0 = 0 \) - Third row: - First column: \( 1 \cdot 1 + (-1) \cdot 2 + 1 \cdot 1 = 1 - 2 + 1 = 0 \) - Second column: \( 1 \cdot (-1) + (-1) \cdot (-1) + 1 \cdot 0 = -1 + 1 + 0 = 0 \) - Third column: \( 1 \cdot 1 + (-1) \cdot 0 + 1 \cdot 0 = 1 + 0 + 0 = 1 \) Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \] ### Step 4: Find \( A^{-1} \) Since \( A^3 = I \), we have: \[ A^{-1} = A^2 \] ### Step 5: Calculate \( A^{-1} \) From our previous calculation: \[ A^{-1} = A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{pmatrix} \] ### Step 6: Solve the System of Equations The system of equations is: 1. \( x - y + z = 1 \) 2. \( 2x - y = 0 \) 3. \( x - 4 = 0 \) We can express this in matrix form: \[ \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} \] Let \( \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} \). Now, we can use \( A^{-1} \) to solve for \( \begin{pmatrix} x \\ y \\ z \end{pmatrix} \): \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \cdot \mathbf{b} \] Calculating: \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} \] Calculating the elements: - First row: \( 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 4 = 4 \) - Second row: \( 0 \cdot 1 + (-1) \cdot 0 + 2 \cdot 4 = 8 \) - Third row: \( 1 \cdot 1 + (-1) \cdot 0 + 1 \cdot 4 = 5 \) Thus, we have: \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 5 \end{pmatrix} \] ### Final Result The solution to the system of equations is: - \( x = 4 \) - \( y = 8 \) - \( z = 5 \)
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations graphically. 2x-y-4=0 , x+y+1=0

Solve the following system of equations: 0. 4 x+0. 3 y=1. 7 ,\ \ \ 0. 7 x-0. 2 y=0. 8

Solve the following system of equations graphically: 3x+y+1=0;\ \ \ 2x-3y+8=0

Solve the following system of equations by matrix method: x-y+z=2,\ \ 2x-y=0, \ \ 2y-z=1

Find A^(-1) , if A=[1 2 5 1-1-1 2 3-1] . Hence, solve the following system of linear equations: x+2y+5z=10 ,\ \ x-y-z=-2,\ \ 2x+3y-z=-11

Solve following system of homogeneous linear equations: 3x+y+z=0,\ \ x-4y+3z=0,\ \ 2x+5y-2z=0

Solve following system of homogeneous linear equations: x+y-2z=0,\ \ 2x+y-3z=0,\ \ 5x+4y-9z=0

Solve following system of homogeneous linear equations: 2x+3y+4z=0,\ \ x+y+z=0,\ \ 2x+5y-2z=0

If A=((-1, 2, 0), (-1, 1, 1), (0, 1, 0)) , find A^(-1) . Use it to solve the system of equations: -x+2y=2, -x+y +z=1, y+2=0 .

If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of linear equation. x+2y+z=4,-x+y+z=0,x-3y+z=2