Home
Class 12
MATHS
Evaluate: int 0^((pi)/(2)) (sin ^(2) x...

Evaluate: ` int _0^((pi)/(2)) (sin ^(2) x .cos ^(2) x )/((sin ^(3) x+ cos ^(3) x)^(2)) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} \, dx, \] we can follow these steps: ### Step 1: Simplify the Integral We start by rewriting the integral \( I \): \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} \, dx. \] ### Step 2: Divide Numerator and Denominator Next, we divide both the numerator and the denominator by \( \cos^6 x \): \[ I = \int_0^{\frac{\pi}{2}} \frac{\frac{\sin^2 x}{\cos^6 x} \cdot \cos^2 x}{\left(\frac{\sin^3 x}{\cos^6 x} + 1\right)^2} \, dx. \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \frac{\tan^2 x \cdot \sec^2 x}{\left(\tan^3 x + 1\right)^2} \, dx. \] ### Step 3: Substitute \( t = \tan x \) Now, we perform the substitution \( t = \tan x \). Then, \( dx = \frac{dt}{1+t^2} \) and the limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) which corresponds to \( t = 0 \) to \( t = \infty \). Substituting these into the integral gives: \[ I = \int_0^{\infty} \frac{t^2}{(t^3 + 1)^2} \cdot \frac{dt}{1+t^2}. \] ### Step 4: Simplify the Integral We can simplify the integral further: \[ I = \int_0^{\infty} \frac{t^2}{(t^3 + 1)^2 (1+t^2)} \, dt. \] ### Step 5: Substitute \( u = 1 + t^3 \) Next, we can use the substitution \( u = 1 + t^3 \), which gives \( du = 3t^2 dt \) or \( dt = \frac{du}{3t^2} \). From \( u = 1 + t^3 \), we find \( t^2 = (u - 1)^{2/3} \) and the limits change accordingly. ### Step 6: Evaluate the Integral After substituting and simplifying, we can evaluate the integral. The final expression will involve evaluating the limits and substituting back to find the value of \( I \). ### Step 7: Final Calculation After performing all substitutions and simplifications, we find: \[ I = \frac{1}{3}. \] Thus, the value of the integral is: \[ \boxed{\frac{1}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx

Evaluate int_(0)^(pi)x^(2){(1+sin x)^(-2) cos x}dx

Evaluate: int_0^(pi//2)(sin x)/(1+cos^2x)dx

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

Evaluate: int_0^(pi/2) (sin2x)/(sin^4x+cos^4x)dx

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

Evaluate: int_0^(pi//2)1/(4sin^2x+5cos^2x)dx