Home
Class 12
MATHS
Evaluate : int 1^(3) (x^(2) +5x) dx ,...

Evaluate : `int _1^(3) (x^(2) +5x) dx ` , expressing as a limit of sum.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_1^3 (x^2 + 5x) \, dx \) and express it as a limit of sums, we can follow these steps: ### Step 1: Set Up the Integral We start with the integral: \[ I = \int_1^3 (x^2 + 5x) \, dx \] ### Step 2: Find the Antiderivative The antiderivative of \( x^2 \) is \( \frac{x^3}{3} \) and the antiderivative of \( 5x \) is \( \frac{5x^2}{2} \). Therefore, the antiderivative of \( x^2 + 5x \) is: \[ F(x) = \frac{x^3}{3} + \frac{5x^2}{2} \] ### Step 3: Evaluate the Antiderivative at the Limits Now we evaluate \( F(x) \) at the upper limit (3) and lower limit (1): \[ F(3) = \frac{3^3}{3} + \frac{5 \cdot 3^2}{2} = \frac{27}{3} + \frac{5 \cdot 9}{2} = 9 + \frac{45}{2} = 9 + 22.5 = 31.5 \] \[ F(1) = \frac{1^3}{3} + \frac{5 \cdot 1^2}{2} = \frac{1}{3} + \frac{5}{2} = \frac{1}{3} + 2.5 = \frac{1}{3} + \frac{7.5}{3} = \frac{8.5}{3} \] ### Step 4: Calculate the Definite Integral Now we can calculate the definite integral: \[ I = F(3) - F(1) = 31.5 - \frac{8.5}{3} \] To perform this subtraction, we convert \( 31.5 \) to a fraction: \[ 31.5 = \frac{63}{2} \] Now we need a common denominator to subtract: \[ \frac{63}{2} - \frac{8.5}{3} = \frac{63 \cdot 3}{6} - \frac{8.5 \cdot 2}{6} = \frac{189}{6} - \frac{17}{6} = \frac{172}{6} = \frac{86}{3} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{86}{3} \] ### Expressing as a Limit of Sums To express the integral as a limit of sums, we can use the Riemann sum approach. We divide the interval \([1, 3]\) into \( n \) equal parts, each of width \( \Delta x = \frac{3 - 1}{n} = \frac{2}{n} \). The points in the interval can be expressed as: \[ x_i = 1 + i \Delta x = 1 + i \cdot \frac{2}{n} \] The Riemann sum \( S_n \) can be expressed as: \[ S_n = \sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left( \left(1 + \frac{2i}{n}\right)^2 + 5\left(1 + \frac{2i}{n}\right) \right) \cdot \frac{2}{n} \] Taking the limit as \( n \to \infty \): \[ I = \lim_{n \to \infty} S_n \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION B|10 Videos
  • MODEL TEST PAPER 20

    ICSE|Exercise SECTION C |10 Videos
  • MODEL TEST PAPER 15

    ICSE|Exercise SECTIONS-C|11 Videos
  • MODEL TEST PAPER-11

    ICSE|Exercise SECTION-C|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(3) (2x^(2) +3x + 5)dx , expressing as a limit of sum

Evaluate : int_1^2 (5x^2)/(x^2+4x+3) dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_3^5(2-x)dx

Evaluate: int_0^1(3x^2+5x)dx

Evaluate int_0^1(2x+3)/(5x^2+1)dx

Evaluate: int(x^3-1)^(1/3)x^5dx

Evaluate: int_1^3(2x^2+5x)dx as limit of a sum

Evaluate : int_(2)^(5) (x^(2)+3) dx using the limit of a sum