Home
Class 11
MATHS
Simplify : i^(-6)...

Simplify : `i^(-6)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify \( i^{-6} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ i^{-6} \] Using the property of exponents, we can rewrite it as: \[ i^{-6} = \frac{1}{i^{6}} \] ### Step 2: Simplify \( i^{6} \) Next, we need to find \( i^{6} \). We know that: \[ i^2 = -1 \] From this, we can derive the powers of \( i \): - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = i^2 \cdot i = -1 \cdot i = -i \) - \( i^4 = i^2 \cdot i^2 = (-1) \cdot (-1) = 1 \) Since \( i^4 = 1 \), the powers of \( i \) repeat every four terms. Thus, we can express \( i^{6} \) as: \[ i^{6} = i^{4} \cdot i^{2} = 1 \cdot (-1) = -1 \] ### Step 3: Substitute back into the expression Now we substitute \( i^{6} \) back into our expression: \[ i^{-6} = \frac{1}{i^{6}} = \frac{1}{-1} = -1 \] ### Final Answer Thus, the simplified form of \( i^{-6} \) is: \[ \boxed{-1} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simplify : i^(15)

Simplify : i^(38)

Simplify: i^(18)

Simplify: i^(13)

Simplify: i^(28)

Simplify: i^(23)

Simplify : a^(6)-b^(6)

Simplify : (-6)-{(-28)div(-7)}

Simplify : (i) (-2)/3+5/9-(-7)/6 (ii) 5/(12)+(-5)/(18)-7/(24)

Simplify : (i) (-2)/3+5/9-(-7)/6 (ii) 5/(12)+(-5)/(18)-7/(24)

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Simplify : i^(-6)

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |