Home
Class 11
MATHS
Evaluate: [i^(18) + ((1)/(i))^(25)]^(3)...

Evaluate: `[i^(18) + ((1)/(i))^(25)]^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \([i^{18} + \left(\frac{1}{i}\right)^{25}]^{3}\), we can follow these steps: ### Step 1: Simplify \(i^{18}\) We know that the powers of \(i\) cycle every 4: - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) To find \(i^{18}\), we can calculate \(18 \mod 4\): \[ 18 \div 4 = 4 \quad \text{(remainder 2)} \] Thus, \(i^{18} = i^2 = -1\). ### Step 2: Simplify \(\left(\frac{1}{i}\right)^{25}\) We can rewrite \(\frac{1}{i}\) as \(-i\) (since \(\frac{1}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i\)). Therefore, we need to evaluate \((-i)^{25}\). Using the same cycle for powers of \(i\): \[ (-i)^{25} = (-1)^{25} \cdot i^{25} = -i^{25} \] Now, calculate \(25 \mod 4\): \[ 25 \div 4 = 6 \quad \text{(remainder 1)} \] So, \(i^{25} = i^1 = i\), hence: \[ (-i)^{25} = -i \] ### Step 3: Combine the results Now we can substitute back into the expression: \[ i^{18} + \left(\frac{1}{i}\right)^{25} = -1 - i \] ### Step 4: Raise to the power of 3 Now we need to compute: \[ [-1 - i]^3 \] Using the binomial theorem: \[ (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] Here, \(a = -1\) and \(b = -i\): \[ (-1)^3 + 3(-1)^2(-i) + 3(-1)(-i)^2 + (-i)^3 \] Calculating each term: - \((-1)^3 = -1\) - \(3(-1)^2(-i) = 3(-1)(-i) = 3i\) - \(3(-1)(-i)^2 = 3(-1)(-1) = 3\) - \((-i)^3 = -i^3 = -(-i) = i\) Now combine these results: \[ -1 + 3i + 3 + i = (2 + 4i) \] ### Final Result Thus, the final answer is: \[ \boxed{2 + 4i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (A)|27 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (B)|69 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Simplify: [i^(18) + ((1)/(i))^(25)]^(3)

Evaluate : (i) 1-:(1)/(3)

Evaluate: [i^19+(1/i)^25]^2

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

Evaluate : (i) i^(135) (ii) i^(-47) (iii) (-sqrt(-1))^(4n +3) , n in N (iv) sqrt(-25) + 3sqrt(-4) + 2 sqrt(-9)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Evaluate. (i) i^(1998) (ii) i^(-9999) (iii) (-sqrt-1)^(4n=3) ,n ne N

Show that: {i^(19)+(1/i)^(25)}^2=-4 (ii) {i^(17)-(1/i)^(34)}^2=2i (iii) {i^(18)+(1/i)^(24)}^3=0 (iv) i^n+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n in Ndot

Express the following complex numbers in the standard form. Also find their conjugate: (i) (1-i)/(1+i) (ii) ((1-i)^2)/(3-i)

Evaluate: (i^2+i^4+i^6+i^7)/(1+i^2+i^3)

ICSE-COMPLEX NUMBERS-Chapter Test
  1. Evaluate: [i^(18) + ((1)/(i))^(25)]^(3)

    Text Solution

    |

  2. Find the square root of 5-12i

    Text Solution

    |

  3. Find the locus of a complex number z=x +yi, satisfying the relation |z...

    Text Solution

    |

  4. Express (13i)/(2-3i) in the form A + Bi

    Text Solution

    |

  5. If z= x +yi and (|z-1-i|+4)/(3|z-1-i|-2)=1, show that x^(2) + y^(2) -2...

    Text Solution

    |

  6. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  7. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  8. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  9. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  10. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  11. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  12. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  13. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  14. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  15. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  16. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  17. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  18. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  19. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  20. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  21. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |